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Abstract

Let G be simple graph. For a vertex u ∈ V (G), denote by M2(u) the set of

vertices v with distance at most 2 away from u. We say that graph G satisfies

the local Dirac’s condition if for every vertex u ∈ V (G), its degree d(u) satisfies

d(u) ≥ |M2(u)|
2 .

It was conjectured that a connected graph G on at least three vertices sat-

isfies the local Dirac’s condition, then G is Hamiltonian. However, Asratian et

al. disproved this conjecture. In this paper, we show that if a connected graph

G on at least three vertices satisfies the local Dirac’s condition, then it contains

a 2-factor. Furthermore, this result is shown to be the best possible.
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1. Introduction

In this paper, we consider simple graphs, that is, finite graphs without multi-

ple edges and loops. For notation and terminology not defined here, readers are

referred to [7]. A graph is Hamiltonian if it contains a spanning cycle. Deter-

mining whether a graph is Hamiltonian is one of few fundamental problems in5

graph theory. There are several well-known sufficient conditions for a graph to

∗Corresponding author: Xiaodong Chen
∗∗This research is supported by National Natural Science Foundation of China (Grant

No. 11901268), and partially supported by NSF grant DMS-1855716 and DMS-2154331.
Email addresses: xiaodongchen74@126.com; (Xiaodong Chen), gchen@gsu.edu (Guantao

Chen)

Preprint submitted to Journal of LATEX Templates February 26, 2023



be Hamiltonian, such as Dirac’s Theorem [10], Ore’s Theorem [12] and Chvátal-

Erdős Theorem [9]. These sufficient conditions involves some global parameters

of a graph: the order, degrees of vertices, the independence number and the

connectivity.10

Inspired by the above global conditions, there are some analogues [2, 3, 4,

5, 8, 13] under the local criteria. Let G be a graph. For any two vertices

u, v ∈ V (G), we use d(u, v) to denote the distance between u and v in G which

is the minimum length of a path with the ends u and v. For a vertex u ∈ V (G)

and a nonnegative integer k, let Mk(u) denote set S of vertices v such that15

d(u, v) ≤ k. By definition, M0(u) = {u} and M1(u) = N(u) ∪ {u} is the closed

neighborhood of u. Diract’s theorem asserts that a graph of order n ≥ 3 is

Hamiltonian if minimum degree δ(G) ≥ n/2. For each vertex v ∈ V (G), let

d(v) denote the degree of u. Asratian and Khachatryan [2] generalized this

result as follows.20

Theorem 1.1 (Asratian and Khachatryan). Let G be a connected graph with

at least three vertices. If d(u) ≥ |M3(u)|
2 for each vertex u ∈ V (G), then G is

Hamiltonian.

Readers are referred to [3, 5, 11, 14, 16] for more local conditions on Hamil-

tonian graphs. We say a graph G satisfies the local Dirac’s condition if d(u) ≥25

|M2(u)|
2 for each vertex u ∈ V (G). Asratian et al. [5] constructed a 2-connected

graph G on at least three vertices that satisfies the local Dirac’s condition but

is not Hamiltonian. The graph in Fig.1 satisfies the local Dirac’s condition but

is not 2-connected. Consequently, it is not 1-tough.

Figure 1: A graph G without a 2-factor.
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In this paper, we prove the local Dirac’s condition is a sufficient for a graph30

to contain a 2-factor.

Theorem 1.2. Let G be a connected graph with at least three vertices. If d(u) ≥
|M2(u)|

2 for each vertex u ∈ V (G), then G contains a 2-factor.

The graph G in Fig.2 contains no 2-factor and d(vi) = |M2(vi)|−1
2 for each

vertex vi in G, i ∈ {1, 2, 3, 4}. Thus the bound in Theorem 1.2 is sharp.35

Figure 2: A graph with a cut vertex u satisfying the local Dirac’s condition.

In the following, we introduce some notation will be used in this paper. Let

G be a graph and v ∈ V (G). Denote by NG(v) the set of neighbors of v in G,

and denote by NG[v] the set NG(v)∪{v}. If there is no confusion, we use N(v)

and N [v] to denote NG(v) and NG[v], respectively. For a vertex set S ⊆ V (G),

let NS(v) = S ∩ NG(v), dS(v) = |NS(v)|. Let d(v) denote dG(v) for brevity if40

there is no confusion. For a graph G with A,B ⊆ V (G), let eG(A,B) denote

the number of edges with one end in A and the other end in B, and let eG(v,B)

denote eG({v}, B).

Let N2(u) = M2(u) \N [u] and d2(u) = |N2(u)|. In a subgraph H of a graph

G, v is called an interior vertex of H if N [v] ⊆ V (H). Let α(G) and κ(G) denote45

the independence number and the connectivity of a graph G, respectively.

2. Preliminaries

A multigraph is a finite graph that may contain parallel edges but no loops.

Let G be a multigraph and S, T ⊆ V (G) be two disjoint vertex sets. A compo-

nent C of G−(S∪T ) C is called an odd component (resp., even component) with50
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respect to (S, T ) if eG(C, T ) ≡ 1 (mod 2) (resp., eG(C, T ) ≡ 0 (mod 2)). Let

HG(S, T ) denote the set of the odd components of G− (S ∪ T ) and hG(S, T ) =

|HG(S, T )|; moreover, let δG(S, T ) = 2|S| − 2|T | +
∑
x∈T

dG−S(x) − hG(S, T ).

The following sufficient and necessary condition on the existence of a 2-factor

is derived from Tutte’s f -factor theorem in [15].55

Theorem 2.1. ([15]) A multigraphG contains a 2-factor if and only if δG(S, T ) ≥

0 for every S, T ⊆ V (G) with S ∩ T = ∅.

Following the definition of δG(S, T ), we can verify that δG(S, T ) ≡ 0 (mod 2)

for every S, T ⊆ V (G) with S∩T = ∅. By Theorem 2.1, if a graph G contains no

2-factor, then G has an ordered pair (S, T ) with S ∩T = ∅ and δG(S, T ) ≤ −2..60

We call an ordered pair (S, T ) a barrier if S ∩ T = ∅ and δG(S, T ) ≤ −2.

A barrier (S, T ) is called a minimal barrier if |S ∪ T | is minimized among all

the barriers of G. The following result gives the characterizations of a minimal

barrier, in which (1)-(3) are obtained from [1] and (4)-(5) are from [8].

Lemma 2.1. ([1, 8]) Let G be a graph without a 2-factor. If (S, T ) is a minimal65

barrier of G, then

(1) T is independent;

(2) if C is an even component with respect to (S, T ), then eG(T,C) = 0;

(3) if C is an odd component with respect to (S, T ), then eG(v, C) ≤ 1 for every

v ∈ T ;70

(4) for every v ∈ S, |{C ∈ HG(S, T ) : eG(v, C) ≥ 1}|+ eG(v, T ) ≥ 4;

(5) |T | > |S| +
∑

k≥1 k · |C2k+1|, where C2k+1 is the union of components C in

HG(S, T ) with eG(C, T ) = 2k + 1, k ≥ 0.

The following result is an important tool in the proof of our main result.

Lemma 2.2. Let G[X,Y ] be a bipartite graph without isolated vertices. If one75

of the following two conditions holds for each vertex y ∈ Y ) xy ∈ E(G), then

|X| ≤ |Y |.
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(i) d(x) ≥ d(y) for every x ∈ N(y).

(ii) d(y) ≥ 3, there is a neighbor x0 ∈ N(y) such that d(x0) = d(y) − 1 and

d(y) ≥ 3 and d(x) ≥ d(y) + 1 for ever vertex in x ∈ N(y) \ {x0}.80

Proof. For each edge xy ∈ E(G) with x ∈ X and y ∈ Y , we assign as weight

w(xy) = 1
d(x) . Then,∑

e∈E(G)

w(e) =
∑
x∈X

∑
y∈N(x)

1

d(x)
=

∑
x∈X

1 = |X|

For each vertex y ∈ Y , if (i) holds, then
∑

x∈N(y)

w(xy) =
∑

x∈N(y)

1
d(x) ≤

|N(y)|
d(y) = 1.

If (ii) holds, then
∑

x∈N(y)

w(xy) ≤
∑

x∈N(y)\{x0}

1
d(y)+1+

1
d(y)−1 = d(y)−1

d(y)+1+
1

d(y)−1 ≤

1 since d(y) ≥ 3. Hence, in both case we have
∑

x∈N(y) w(xy) ≤ 1, which in85

turn shows that ∑
e∈E(G)

w(e) =
∑
y∈Y

∑
x∈N(y)

1

d(x)
≤

∑
y∈Y

1 = |Y |.

Therefore, |X| =
∑

e∈E(G) w(e) ≤ |Y |.

AAA Note that M2(v) = N [v]∪N2(v) and |M2(v)| = d(v)+d2(v)+1 for each

vertex v in a graph. Then, by simple calculation, we can obtain the following

result.90

Remark 1. If G satisfies the local Dirac’s condition, then d(v) ≥ d2(v) + 1 for

each vertex v of G.

3. Proof of Theorem 1.2

Suppose on the contrary, there exists a connected graph G with at least three

vertices satisfying the local Dirac’s condition, but G contains no 2-factor. Let95

E(HG(S, T )) denote the union of the edge sets of all components in HG(S, T ),

and for a vertex set W of S ∪ T, let eG(W,HG(S, T )) denote the number of

edges between W and all the components in HG(S, T ). Then, by Theorem 2.1,

we choose a barrier (S, T ) of G such that
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(1) (S, T ) is a minimal barrier of G;100

(2) subject to (1), |E(HG(S, T ))| is maximized;

(3) subject to (1) and (2), eG(S,HG(S, T )) is maximized.

Claim 1. δ(G) ≥ 2.

Proof. We have either N [v] = V (G) or d2(v) ≥ 1 for each vertex v ∈ V (G). If

N [v] = V (G), then d(v) ≥ |V (G)|−1 ≥ 2. If d2(v) ≥ 1, then d(v) ≥ d2(v)+1 ≥105

2.

Claim 2. For each v ∈ T, if NC(v) ̸= ∅ for some component C ∈ C1 with

|C| = 1, then dG−S(v) = 1.

Proof. Suppose on the contrary, there exists a vertex v ∈ T and a component

C ∈ C1 with |C| = 1 and dG−S(v) ≥ 2. Let C = {u}. By Lemma 2.1 (1)-(3),110

there are dG−S(v) components of HG(S, T ), in each one of which v has exactly

one neighbor. Thus eG({v},HG(S, T )) = dG−S(v) ≥ 2. Let T ′ := (T∪{u})\{v}.

Clearly, |S ∪ T | = |S ∪ T ′|. We have hG(S, T
′) = hG(S, T ) − dG−S(v) + 1 by

Lemma 2.1 (2)-(3), and
∑

w∈T ′ dG−S(w) =
∑

w∈T dG−S(w)−dG−S(v)+1. Thus,

δG(S, T
′) = δG(S, T ). Since |C| = 1 and dG−S(v) ≥ 2, we have |E(HG(S, T

′))| >115

|E(HG(S, T ))|, a contradiction to the choice of (S, T ). Thus dG−S(v) = 1.

For each vertex v ∈ T, we define a mapping fv from HG(S, T ) to P(N2(v))

such that fv(C) = N2(v)∩V (C) for C ∈ HG(S, T ), where P(N2(v)) = {S : S ⊆

N2(v)}. Clearly, fv(C)∩ fv(C
′) = ∅ if C and C ′ are two distinct components in

HG(S, T ).120

By Claim 2 and Lemma 2.1 (3), it is easy to obtain the following result.

Claim 3. For each vertex v ∈ T, if NC(v) ̸= ∅ for some component C ∈⋃
k≥1 C2k+1, then |C ′| ≥ 2 and fv(C

′) ̸= ∅ for each component C ′ in C1 with

NC′(v) ̸= ∅.

By Lemma 2.1 (3), each vertex v ∈ T has at most one neighbor in each125

component of HG(S, T ). We have the following result.
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Claim 4. For any vertex v ∈ T and any component C ∈ HG(S, T ) with |C| ≥ 2,

if NC(v) ̸= ∅, then fv(C) ̸= ∅.

Claim 5. Given an edge uv with v ∈ T, u ∈ V (C), and C ∈
⋃

k≥1 C2k+1, if

dG−C1(v) ≤ 2, then NT (u) = {v}, dC(u) = 1 and dS(v) = 1.130

Proof. By Lemma 2.1 (3), NC(v) = {u}. Let C′
1 = {C ∈ C1 : NC(v) ̸= ∅}. By

Claim 3, |C ′| ≥ 2 and fv(C
′) ̸= ∅ for each component C ′ in C′

1 provided C′
1 ̸= ∅.

Thus, |C′
1| ≤

∑
C′∈C′

1

|fv(C ′)| ≤ d2(v). We have d2(v) ≤ |C′
1| + 1. Otherwise,

d2(v) ≥ |C′
1| + 2, and then d(v) ≥ d2(v) + 1 ≥ |C′

1| + 3 by Lemma 1, which

implies dG−C1
(v) ≥ 3, giving a contradiction.135

Suppose |C| = 1, i.e., C = {u}. Then, dT (u) ≥ 3 since C ∈
⋃

k≥1 C2k+1.

Note that NT (u) \ {v} ⊆ N2(v) by Lemma 2.1 (1). It follows that d2(v) ≥∑
C′∈C′

1

|fv(C ′)|+(dT (u)−1) ≥ |C′
1|+(dT (u)−1) ≥ |C′

1|+2, giving a contradiction.

Thus, |C| ≥ 2 and then |fv(C)| ≥ 1 by Claim 4, which implies d2(v) ≥ |C′
1| +

|fv(C)| ≥ |C′
1|+1. Note that dC(u) = |fv(C)|. If |fv(C)| ≥ 2 or NT (u)\{v} ≠ ∅,140

then we have d2(v) ≥ |C′
1| + 2, giving a contradiction. Thus, NT (u) = {v}

and dC(u) = 1. Moreover, we have d2(v) = |C′
1| + 1 and hence d(v) ≥ |C′

1| + 2

by Lemma 1, which implies dG−C1
(v) = 2 by dG−C1

(v) ≤ 2. Suppose NS(v) =

∅. Then, by dG−C1
(v) = 2 and Lemma 2.1 (1), there is a component C ′ ∈

(
⋃

k≥1 C2k+1)\{C} with NC′(v) ̸= ∅. As the preceding proof for C, |C ′| ≥ 2 and145

|fv(C ′)| = 1. It follows that d2(v) ≥ |C′
1|+ |fv(C ′)|+ |fv(C)| = |C′

1|+ 2, giving

a contradiction. Thus NS(v) ̸= ∅, and dS(v) = 1 by dG−C1(v) = 2.

Claim 6. For v ∈ T, if NC(v) ̸= ∅ for some C ∈
⋃

k≥1 C2k+1, then dG−C1
(v) ≥

3.

Proof. Denote by u the neighbor of v in C. Suppose on the contrary, dG−C1
(v) ≤150

2. Then, dS(v) = 1 by Claim 5. Let NS(v) = {w}. Clearly, w ̸= u. Since

dG−C1
(v) ≤ 2, we have dG−C1

(v) = 2 by {w, u} ⊆ N(v). By Claim 5, dC(u) = 1,

which implies |C| ≥ 2 and |fv(C)| = 1. Let NC(u) = {u1}. Then, fv(C) = {u1}.

Suppose |NT (w)| ≥ 2 and let w1 ∈ NT (w) \ {v}. Then, w1 ∈ N2(v) by Lemma

2.1 (1). Let C′
1 = {C ∈ C1 : NC(v) ̸= ∅}. By Claim 3, fv(C

′) ̸= ∅ for each155
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component C ′ in C′
1 provided C′

1 ̸= ∅. Clearly, u1 ̸= w1 and {u1, w1} ⊆ N2(v).

Moreover, {u1, w1}∩fv(C ′) = ∅ for each C ′ ∈ C′
1. It follows that d2(v) ≥ |C′

1|+2,

which implies dG−C1
(v) ≥ 3, giving a contradiction. Thus NT (w) = {v}.

By Lemma 2.1 (4), there are at least three components of HG(S, T ) in which

w has a neighbor. Suppose NC∗(w) ̸= ∅ and NC∗(v) = ∅ for a component160

C∗ ∈ HG(S, T ). Let w∗ ∈ NC∗(w). Then, w∗ ∈ N2(v). Clearly, w
∗ ̸= u1 and

{w∗, u1} ⊆ N2(v). Moreover, {u1, w
∗} ∩ fv(C

′) = ∅ for each C ′ ∈ C′
1. Thus

d2(v) ≥ |C′
1|+2, and then dG−C1(v) ≥ 3, giving a contradiction. Thus NC∗(v) ̸=

∅ for each component C∗ ∈ HG(S, T ) with NC∗(w) ̸= ∅. It follows that there are

at least three components of HG(S, T ) in which v has a neighbor. Moreover, by165

dS(v) = 1, we have dG(v) ≥ 4, which implies |C′
1| ≥ 2 by dG−C1

(v) = 2. Suppose

C1, C2 are two distinct components in C′
1 and vi ∈ fv(Ci), i ∈ {1, 2} by Claim

3. Clearly, {v1, v2} ⊆ N2(v). Recall that fv(C) = {u1}. Since C ∈
⋃

k≥1 C2k+1

and dT (u) = dC(u) = 1 by Claim 5, there is some vertex u′ ∈ V (C) \ {u}

with NT (u
′) ̸= ∅, which implies N(u1) \ N(u) ̸= ∅. Thus there exists a vertex170

u∗ ∈ N(u1) with u∗ ∈ N2(u). Clearly, {u∗} ∩ NCi(v) = ∅, i = 1, 2, and hence

d2(u) ≥ 3. Thus d(u) ≥ d2(u) + 1 ≥ 4, which implies dS(u) ≥ 2 by dC(u) = 1

and dT (u) = 1. Let u2 ∈ NS(u) \ {w}. By NS(v) = {w}, we have u2 ∈ N2(v).

Clearly, u1 ̸= u2 and {u1, u2} ∩ fv(C
′) = ∅ for each C ′ ∈ C′

1. Thus, d2(v) ≥

|C′
1|+ |{u1, u2}| = |C′

1|+ 2, and then dG−C1(v) ≥ 3, giving a contradiction.175

Let H be the resulting graph obtained by doing the following operations on

G:

(1) Remove all the even components;

(2) Remove all the components in C1;

(3) Remove all the edges in G[S];180

(4) For each component C ∈
⋃

k≥1 C2k+1, suppose NT (C) = {vC0 , vC1 , · · · , vC2k}.

Firstly, replace C by an independent set UC = {uC
1 , u

C
2 , · · · , uC

k }. Secondly,

join uC
i to vC2i−1 and vC2i, respectively, and moreover, join uC

1 to vC0 , 1 ≤ i ≤

k.
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Clearly, the vertices in S ∪ T of G are not changed in H, and we still use S185

and T to denote the two vertex sets in H. Since T is an independent set in G by

Lemma 2.1 (1), by the above operations, H is a bipartite graph. In the following

proof, let H = H[Y, T ] and Y1 = Y \S, where Y = S ∪ (
⋃
k≥1

⋃
C∈C2k+1

UC). By the

above operations, we can obtain the following two results.

Claim 7. |Y | = |S|+
∑

k≥1 k · |C2k+1|.190

Claim 8. dH(y) ≤ 3 for each vertex y ∈ Y1.

Claim 9. For each vertex v ∈ T, dH(v) = dG−C1(v) ≥ 1.

Proof. By Lemma 2.1 (1)-(2), NG(v) ⊆ S ∪ (
⋃

k≥0 C2k+1) for each vertex v ∈ T.

Thus we have dH(v) = dG−C1
(v) from the operations on G. Suppose on the

contrary that H contains an isolated vertex v in T. Then, NG(v) ⊆
⋃

C∈C1

C. Let195

C′
1 denote the union of the components in C1, in which v has a neighbour. Then,

|C′
1| ≥ 2 since dG(v) ≥ 2 by Claim 1 and Lemma 2.1 (3), and hence |C| ≥ 2

by Claim 2, for each component C ∈ C′
1. Moreover, each C in C′

1 contains at

least one vertex in N2(v) in G by Claim 4. Thus d2(v) ≥
∑

C∈C′
1

|fv(C)| ≥ |C′
1|,

which implies dG(v) ≥ |C′
1| + 1. It follows that NG(v) contains a vertex not in200

any component of C′
1, a contradiction.

Claim 10. For any v ∈ T, if NG(v) ∩ V (C) = ∅ for each component C ∈ C1
with |C| = 1, then dH(v) ≥ dH(u) for each vertex u ∈ NH(v).

Proof. Clearly, NH(v) ∩ Y1 ̸= ∅ if and only if NG(v) has a neighbor in some

component of
⋃

k≥1 C2k+1. Suppose NG(v) has a neighbor in some component205

of
⋃

k≥1 C2k+1. Then, dG−C1
(v) ≥ 3 by Claim 6, and hence dH(v) ≥ 3 ≥ dH(y)

by Claim 8 and Claim 9 for each y ∈ Y1 ∩NH(v).

By the operations on G, S ∩NH(v) = S ∩NG(v). Suppose w ∈ S ∩NH(v).

Let C′
1 = {C ∈ C1 : NC(v) ̸= ∅}. By the hypothesis of the claim, |C ′| ≥

2 for each C ′ ∈ C′
1 provided C′

1 ̸= ∅, and hence |fv(C ′)| ≥ 1 by Claim 4.210

Since NH(w) ⊆ T, we have NH(w) \ {v} ⊆ N2(v) by Lemma 2.1 (1). Clearly,
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(
⋃

C′∈C′
1

fv(C
′)) ∩ (NH(w) \ {v}) = ∅. Then dG(v) ≥ d2(v) + 1 ≥

∑
C′∈C′

1

|fv(C ′)|+

dH(w) ≥ |C′
1|+ dH(w). Thus, dH(v) = dG−C1

(v) ≥ dH(w).

Claim 11. For any vertex v ∈ T, if there exists a vertex u ∈ NH(v) with

dH(u) > dH(v), then dH(u) ≥ 3, dH(v) = dH(u) − 1, and dH(v′) ≥ dH(u) + 1215

for each vertex v′ ∈ NH(u) \ {v}.

Proof. By dH(u) > dH(v) and Claim 10, v has a neighbor in some component

C ∈ C1 with |C| = 1. Suppose C = {w}. Then, NG(v) ⊆ S ∪ {w} by Claim

2, and so u ∈ S and dH(v) = dG(v) − 1. Since H = H[Y, T ] is a bipartite

graph, NH(u) ⊆ T. By Lemma 2.1 (1), (NH(u) \ {v}) ⊆ N2(v). Thus, dG(v) ≥220

d2(v) + 1 ≥ dH(u), which implies dH(v) = dG(v)− 1 ≥ dH(u)− 1. By dH(u) >

dH(v), we have dH(v) = dH(u)− 1, which implies N2(v) = NH(u) \ {v}. Thus,

(NG(u) \ T ) ⊆ NG(v), and u has at most w as a neighbor in the components

of HG(S, T ). It follows that dH(u) = |NG(u) ∩ T | ≥ 3 by Lemma 2.1 (4). Since

N2(v) = NH(u) \ {v} ⊆ T and NG(w) ⊆ S ∪ {v}, we have NG[w] ⊆ NG[v]. We225

have NG[w] = NG[v]. Otherwise, NG(w)\{v} is a proper subset of NG(v)\{w},

which implies |eG(w, S)| < |eG(v, S)|. Let T ′ := (T ∪ {w}) \ {v}, C ′ := {v},

and HG(S, T
′) = (HG(S, T ) \ {C}) ∪ {C ′}. By |C| = 1 and dG−S(v) = 1, it

is easy to see that δG(S, T
′) = δG(S, T ). By |eG(v, S)| > |eG(w, S)|, we have

eG(S,HG(S, T
′)) > eG(S,HG(S, T )), giving a contradiction to the choice of230

(S, T ). Thus, we have w ∈ N(u) by NG[w] = NG[v]. Since NT (w) = {v}, we

have {w} ∪ (NH(u) \ {u′}) ⊆ N2(u
′) for each vertex u′ ∈ NH(u) \ {v}. Thus,

dG(u
′) ≥ d2(u

′) + 1 ≥ dH(u) + 1.

Let u1 ∈ NH(u) \ {v}. Suppose u1 has no neighbor in any component of

C1. Then dH(u1) = dG(u1) ≥ dH(u) + 1 by u1 ∈ T. Suppose NC′(u1) ̸= ∅ for235

some component C ′ ∈ C1 with |C ′| = 1. By NT (w) = {v} and w ∈ N(u), we

have w ∈ N2(u1). Let C
′ = {w′}. Then, NG−S(u1) = {w′} by Claim 2. Clearly,

w ̸= w′ and NG(w
′) ⊆ S ∪ {u1}. Suppose there is a vertex u2 ∈ NG(w

′) \ {u1}

with u1u2 /∈ E(G). Then, u2 ∈ S and hence u2 ̸= w. Thus {u2, w} ∪ (NH(u) \

{u1}) ⊆ N2(u1) and d2(u1) ≥ dH(u) + 1, which implies dG(u1) ≥ d2(u1) + 1 ≥240

dH(u) + 2. Since NG−S(u1) = {w′}, we have dH(u1) = dG(u1)− 1 ≥ dH(u) + 1.
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Suppose NG(w
′) ⊆ NG[u1]. Then, NG[w

′] = NG[u1]. Otherwise, |eG(u1, S)| >

|eG(w′, S)|. Let T ∗ := (T ∪ {w′}) \ {u1}. As the preceding proof for v and w,

we have δG(S, T
∗) = δG(S, T ), and eG(S,HG(S, T

∗)) > eG(S,HG(S, T )), giving

a contradiction to the choice of (S, T ). Thus uw′ ∈ E(G) by u ∈ NG(u1),245

which implies w′ ∈ N2(v), giving a contradiction with N2(v) = NH(u) \ {v}.

Suppose |C ′′| ≥ 2 for each component C ′′ ∈ C1 with NC′′(u1) ̸= ∅. Then,

by Claim 4, |fu1
(C ′′)| ≥ 1 for each component C ′′ ∈ C1 with NC′′(u1) ̸= ∅.

Note that
⋃

C′′∈C1

fu1(C
′′) ∪ (NH(u) \ {u1}) ∪ {w} ⊆ N2(u1). Then dG(u1) ≥∑

C′′∈C1

|fu1
(C ′′)|+ dH(u) + 1. Thus dH(u1) ≥ dH(u) + 1.250

By Claim 9, T contains no isolated vertex in H. Note that Y may contain

some isolated vertex y in H if and only if y ∈ S with NG(y) ∩ T = ∅. Let

Y ′ = NH(T ) and H ′ := H[Y ′, T ] be a subgraph of H[Y, T ]. By Claim 10 and

Claim 11, each edge in H ′ satisfies the hypothesis of Lemma 2.2, and hence

|T | ≤ |Y ′| ≤ |Y | by Lemma 2.2. By Lemma 2.1 (5) and Claim 7, we have255

|T | > |Y |, giving a contradiction. Thus Theorem 1.2 is true.
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