Local Dirac’s condition on the existence of 2-factor
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Abstract

Let G be simple graph. For a vertex u € V(G), denote by Mas(u) the set of
vertices v with distance at most 2 away from u. We say that graph G satisfies
the local Dirac’s condition if for every vertex u € V(G), its degree d(u) satisfies
d(u) > Ml

It was conjectured that a connected graph G on at least three vertices sat-
isfies the local Dirac’s condition, then G is Hamiltonian. However, Asratian et
al. disproved this conjecture. In this paper, we show that if a connected graph
G on at least three vertices satisfies the local Dirac’s condition, then it contains

a 2-factor. Furthermore, this result is shown to be the best possible.
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1. Introduction

In this paper, we consider simple graphs, that is, finite graphs without multi-
ple edges and loops. For notation and terminology not defined here, readers are
referred to [7]. A graph is Hamiltonian if it contains a spanning cycle. Deter-
mining whether a graph is Hamiltonian is one of few fundamental problems in

graph theory. There are several well-known sufficient conditions for a graph to
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be Hamiltonian, such as Dirac’s Theorem [10], Ore’s Theorem [12] and Chvétal-
Erdés Theorem [9]. These sufficient conditions involves some global parameters
of a graph: the order, degrees of vertices, the independence number and the
connectivity.

Inspired by the above global conditions, there are some analogues [2, 3, 4,
5, 8, 13] under the local criteria. Let G be a graph. For any two vertices
u,v € V(G), we use d(u,v) to denote the distance between u and v in G which
is the minimum length of a path with the ends w and v. For a vertex u € V(G)
and a nonnegative integer k, let My(u) denote set S of vertices v such that
d(u,v) < k. By definition, My(u) = {u} and M;(u) = N(u) U {u} is the closed
neighborhood of w. Diract’s theorem asserts that a graph of order n > 3 is
Hamiltonian if minimum degree §(G) > n/2. For each vertex v € V(G), let
d(v) denote the degree of u. Asratian and Khachatryan [2] generalized this

result as follows.

Theorem 1.1 (Asratian and Khachatryan). Let G be a connected graph with
at least three vertices. If d(u) > ‘M:”i;u)l for each vertex u € V(G), then G is

Hamiltonian.

Readers are referred to [3, 5, 11, 14, 16] for more local conditions on Hamil-
tonian graphs. We say a graph G satisfies the local Dirac’s condition if d(u) >
WZQM for each vertex u € V(G). Asratian et al. [5] constructed a 2-connected
graph G on at least three vertices that satisfies the local Dirac’s condition but

is not Hamiltonian. The graph in Fig.1 satisfies the local Dirac’s condition but

is not 2-connected. Consequently, it is not 1-tough.

U2 U3

Figure 1: A graph G without a 2-factor.



30 In this paper, we prove the local Dirac’s condition is a sufficient for a graph

to contain a 2-factor.

Theorem 1.2. Let G be a connected graph with at least three vertices. If d(u) >

Wgﬂ for each vertex u € V(QG), then G contains a 2-factor.

_ [ Ma(vi
- 2

The graph G in Fig.2 contains no 2-factor and d(v;) I=1 for each

3 vertex v; in G,i € {1,2,3,4}. Thus the bound in Theorem 1.2 is sharp.

U

Figure 2: A graph with a cut vertex u satisfying the local Dirac’s condition.

In the following, we introduce some notation will be used in this paper. Let

G be a graph and v € V(G). Denote by Ng(v) the set of neighbors of v in G,

and denote by Ng[v] the set Ng(v)U{v}. If there is no confusion, we use N(v)

and Nv] to denote Ng(v) and Ng[v], respectively. For a vertex set S C V(G),

w let Ng(v) = SN Ng(v),ds(v) = |Ng(v)|]. Let d(v) denote dg(v) for brevity if

there is no confusion. For a graph G with A, B C V(G), let eq(A, B) denote

the number of edges with one end in A and the other end in B, and let eg(v, B)
denote eg({v}, B).

Let Ny(u) = Ma(u) \ N[u] and da(u) = |Na(u)|. In a subgraph H of a graph

s G, vis called an interior vertex of H if N[v] C V(H). Let a(G) and x(G) denote

the independence number and the connectivity of a graph G, respectively.

2. Preliminaries

A multigraph is a finite graph that may contain parallel edges but no loops.
Let G be a multigraph and S, T C V(G) be two disjoint vertex sets. A compo-

so nent C of G—(SUT) C is called an odd component (resp., even component) with
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respect to (S,T) if eq(C,T) = 1 (mod 2) (resp., e¢(C,T) = 0 (mod 2)). Let
He(S,T) denote the set of the odd components of G — (SUT) and hg(S,T) =
|He (S, T)|; moreover, let 6¢(S,T) = 2|S| — 2|T| + 3 da_s(x) — ha(S,T).
The following sufficient and necessary condition on t}gl:eE instence of a 2-factor

is derived from Tutte’s f-factor theorem in [15].

Theorem 2.1. ([15]) A multigraph G contains a 2-factor if and only if 6¢(S,T') >
0 for every S, T C V(G) with SNT = 0.

Following the definition of (S, T'), we can verify that ¢ (S, T) = 0 (mod 2)
for every S, T C V(G) with SNT = (. By Theorem 2.1, if a graph G contains no
2-factor, then G has an ordered pair (S,T) with SNT = 0 and 6¢(S,T) < —2..
We call an ordered pair (S,T) a barrier if SNT = § and 6g(S,T) < —2.
A barrier (S,T) is called a minimal barrier if |S U T)| is minimized among all
the barriers of G. The following result gives the characterizations of a minimal

barrier, in which (1)-(3) are obtained from [1] and (4)-(5) are from [8].

Lemma 2.1. ([1, 8]) Let G be a graph without a 2-factor. If (S, T') is a minimal
barrier of G, then

(1) T is independent;
(2) if C is an even component with respect to (S,T), then eq(T,C) = 0;

(3) if C is an odd component with respect to (S, T'), then e (v, C') < 1 for every
veT;

(4) for every v € S,|{C € Ha(S,T) : eg(v,C) > 1}| + eq(v,T) > 4;

(5) 1T > S|+ g1k - [Cons1], where Copiq is the union of components C' in
He(S,T) with eq(C,T) =2k + 1,k > 0.

The following result is an important tool in the proof of our main result.

Lemma 2.2. Let G[X,Y] be a bipartite graph without isolated vertices. If one
of the following two conditions holds for each vertex y € Y) xy € E(G), then
|X] < [Y].
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(i) d(z) > d(y) for every x € N(y).

(ii) d(y) > 3, there is a neighbor zy € N(y) such that d(zp) = d(y) — 1 and
d(y) > 3 and d(x) > d(y) + 1 for ever vertex in z € N(y) \ {zo}.

Proof. For each edge zy € E(G) with x € X and y € Y, we assign as weight
w(zy) = . Then,

1
2 we=2, > gy =2 1=l
zeX yeN (z ex

e€EE(Q) )
For each vertex y € Y, if (i) holds, then > w(zy)= >, ﬁ Id((y))l -1
zeN(y) €N (y)
If (ii) holds, then > w(zy) < > . 1 + L Z(y)—l_i_d 1<
€N (y) zeN(y)\{zo} (y)+1 " d(y)-1 (y)+1 T d(y)—1

1 since d(y) > 3. Hence, in both case we have 3 .y, w(zy) < 1, which in
turn shows that

> we=Y ¥ g i=l

e€E(G) YEY zEN(y) yey

Therefore, | X| =" c g wle) < [Y]. O

AAA Note that Ms(v) = N[v]UNy(v) and |Ms(v)| = d(v)+dz(v)+1 for each
vertex v in a graph. Then, by simple calculation, we can obtain the following

result.

Remark 1. If G satisfies the local Dirac’s condition, then d(v) > dy(v) + 1 for

each vertex v of G.

3. Proof of Theorem 1.2

Suppose on the contrary, there exists a connected graph G with at least three
vertices satisfying the local Dirac’s condition, but G contains no 2-factor. Let
E(Ha(S,T)) denote the union of the edge sets of all components in Hg(S,T),
and for a vertex set W of SUT, let eq(W,Hg(S,T)) denote the number of
edges between W and all the components in Hg (S, T). Then, by Theorem 2.1,
we choose a barrier (S,T) of G such that
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(1) (S,T) is a minimal barrier of G;

(2) subject to (1), |[E(Ha(S,T))| is maximized,;

(3) subject to (1) and (2), eg(S,Ha(S,T)) is maximized.
Claim 1. §(G) > 2.

Proof. We have either N[v] = V(G) or da(v) > 1 for each vertex v € V(G). If
N[v] = V(G), then d(v) > |[V(G)| —1 > 2. If do(v) > 1, then d(v) > da(v)+1 >
2. O

Claim 2. For each v € T, if Nog(v) # 0 for some component C € C; with
|C| =1, then dg_s(v) = 1.

Proof. Suppose on the contrary, there exists a vertex v € T and a component
C € Cy with |C] =1 and dg_g(v) > 2. Let C' = {u}. By Lemma 2.1 (1)-(3),
there are dg_g(v) components of H(S,T), in each one of which v has exactly
one neighbor. Thus eq({v}, Ha(S,T)) = dg—s(v) > 2. Let T" := (TU{u})\{v}.
Clearly, [SUT| = |SUT'|. We have hg(S,T") = ha(S,T) — dg_s(v) + 1 by
Lemma 2.1 (2)-(3), and > cpv do—s(w) = >~ cr da—s(w)—dg_s(v)+1. Thus,
3c(S,T") = 6g(S,T). Since |C| = 1 and dg_g(v) > 2, we have |[E(Ha(S,T"))| >
|[E(Ha(S,T))|, a contradiction to the choice of (S,T). Thus dg_s(v) =1. O

For each vertex v € T, we define a mapping f, from Hg(S,T) to P(Na(v))
such that f,(C) = N2(v)NV(C) for C € Ha(S,T), where P(Na(v)) ={5: 5 C
Na(v)}. Clearly, f,(C)N f,(C") =0 if C and C" are two distinct components in
He(S,T).

By Claim 2 and Lemma 2.1 (3), it is easy to obtain the following result.

Claim 3. For each vertex v € T, if No(v) # 0 for some component C €
Urs1 Cokt1, then [C'| > 2 and f,(C") # O for each component C' in Ci with
Nex(v) # 0.

By Lemma 2.1 (3), each vertex v € T has at most one neighbor in each

component of Hg (S, T). We have the following result.
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Claim 4. For any vertexv € T and any component C' € Ha(S,T) with |C| > 2,
if No(v) 0, then £,(C) #0.

Claim 5. Given an edge uv with v € T,u € V(C), and C € Uk21 Coky1, if
dg—_c, (v) <2, then Nr(u) = {v},dc(u) =1 and ds(v) = 1.

Proof. By Lemma 2.1 (3), N¢(v) = {u}. Let Cf = {C € C; : No(v) # 0}. By
Claim 3, |C’| > 2 and f,(C") # () for each component C’ in C{ provided Cj # 0.
Thus, |C] < Z/ |fo(C)| < da(v). We have da(v) < |Cq] + 1. Otherwise,
da(v) > |Cy] +02,ecand then d(v) > da(v) +1 > |C{] + 3 by Lemma 1, which
implies dg_¢, (v) > 3, giving a contradiction.
Suppose |C| = 1, i.e., C = {u}. Then, dr(u) > 3 since C' € > Cont1.
Note that Nr(u) \ {v} € Na(v) by Lemma 2.1 (1). It follows that da(v) >
Z / | fo(C)|+ (dr(u)—1) > |Ci|+ (dr(u) —1) > |C{|+2, giving a contradiction.
%hGlf;, |C] > 2 and then |f,(C)| > 1 by Claim 4, which implies da(v) > |C1] +
|fo(C)| = |C1|+1. Note that dc(u) = |fo(C)|. If | fo(C)] = 2 or Ny (u)\{v} # 0,
then we have dz(v) > |C1| + 2, giving a contradiction. Thus, Nr(u) = {v}
and dgo(u) = 1. Moreover, we have do(v) = |Ci| 4+ 1 and hence d(v) > |C{| + 2
by Lemma 1, which implies dg_¢, (v) = 2 by dg—¢, (v) < 2. Suppose Ng(v) =
(). Then, by dg—c,(v) = 2 and Lemma 2.1 (1), there is a component C’ €
(Ugs1 Co+1) \{C} with Neov(v) # 0. As the preceding proof for C, [C'| > 2 and
|fo(C")] = 1. It follows that da(v) > |C{| + | fo(C")] + | fo(C)| = |C1] + 2, giving
a contradiction. Thus Ng(v) # 0, and dg(v) = 1 by dg_c, (v) = 2. O

Claim 6. Forv €T, if Nc(v) # 0 for some C' € Uy~ Cart1, then dg—c, (v) >
3.

Proof. Denote by u the neighbor of v in C. Suppose on the contrary, dg_c, (v) <
2. Then, dg(v) = 1 by Claim 5. Let Ng(v) = {w}. Clearly, w # u. Since
dg—_c, (v) <2, we have dg_¢, (v) = 2 by {w,u} C N(v). By Claim 5, do(u) = 1,
which implies |C| > 2 and |f,(C)| = 1. Let No(u) = {u1}. Then, f,(C) = {u1}.
Suppose |Nr(w)| > 2 and let wy € Ny(w) \ {v}. Then, wy € Na(v) by Lemma
2.1 (1). Let C; = {C € C; : N¢(v) # 0}. By Claim 3, f,(C") # 0 for each
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component C’ in C{ provided C; # 0. Clearly, u; # wy and {u1, w1} C Na(v).
Moreover, {uy,w; }N f,(C") = 0 for each C" € Cf. Tt follows that da(v) > |C1|+2,
which implies dg_c, (v) > 3, giving a contradiction. Thus Np(w) = {v}.

By Lemma 2.1 (4), there are at least three components of H¢ (.S, ') in which
w has a neighbor. Suppose Ng«(w) # @ and Ng«(v) = @ for a component
C* € He(S,T). Let w* € No«(w). Then, w* € No(v). Clearly, w* # u; and
{w*,u1} € Na(v). Moreover, {ui,w*} N f,(C’) = @ for each C" € C;. Thus
da(v) > |C1]+2, and then dg_¢, (v) > 3, giving a contradiction. Thus N¢+(v) #
() for each component C* € H(S,T) with Nos(w) # 0. It follows that there are
at least three components of H(S,T) in which v has a neighbor. Moreover, by
ds(v) = 1, we have dg(v) > 4, which implies |C]| > 2 by dg—¢, (v) = 2. Suppose
Cy,Cy are two distinct components in C; and v; € f,(C;),i € {1,2} by Claim
3. Clearly, {v1,v2} C N3(v). Recall that f,(C) = {u1}. Since C € Uk21 Cokt1
and dr(u) = de(u) = 1 by Claim 5, there is some vertex v € V(C) \ {u}
with Np(u') # 0, which implies N(u1) \ N(u) # 0. Thus there exists a vertex
u* € N(up) with u* € Na(u). Clearly, {u*} N Ng,(v) = 0,7 = 1,2, and hence
do(u) > 3. Thus d(u) > da(u) + 1 > 4, which implies dg(u) > 2 by do(u) =1
and dp(u) = 1. Let ug € Ng(u) \ {w}. By Ng(v) = {w}, we have us € Na(v).
Clearly, u1 # ug and {uy,us2} N f,(C") = 0 for each ¢’ € Ci. Thus, d2(v) >
[C1] 4+ {u1,u2}| = |Ci] + 2, and then dg_c, (v) > 3, giving a contradiction. O

Let H be the resulting graph obtained by doing the following operations on
G:

(1) Remove all the even components;
(2) Remove all the components in Cy;
(3) Remove all the edges in G[S];

(4) For each component C' € |J5 Caxt1, suppose Nr(C) = {v§ v, WS
Firstly, replace C' by an independent set U¢ = {u{,uS, - - ,ukc} Secondly,
join uzc to vg;_l and ’UQC;-, respectively, and moreover, join ulc to vg , 1< <

k.
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Clearly, the vertices in S UT of G are not changed in H, and we still use S
and T to denote the two vertex sets in H. Since T is an independent set in G by
Lemma 2.1 (1), by the above operations, H is a bipartite graph. In the following
proof, let H = H[Y,T] and Y; = Y\ S, where Y = SU(J | U%). By the

k>1C€eCakt1
above operations, we can obtain the following two results.

Claim 7. [Y] =[S+ > ;51 k- [Caral-
Claim 8. dg(y) < 3 for each vertex y € Y;.
Claim 9. For each vertezv € T, dg(v) = dg—_¢, (v) > 1.

Proof. By Lemma 2.1 (1)-(2), Ng(v) € SU(UgsqCart1) for each vertex v € T
Thus we have dy(v) = dg—¢,(v) from the operations on G. Suppose on the
contrary that H contains an isolated vertex v in 7. Then, Ng(v) C |J C. Let
C} denote the union of the components in Cy, in which v has a neighbcoiil. Then,
IC1] > 2 since dg(v) > 2 by Claim 1 and Lemma 2.1 (3), and hence |C| > 2

by Claim 2, for each component C' € Cj. Moreover, each C' in C] contains at

least one vertex in Ny(v) in G by Claim 4. Thus ds(v) > > |fo(C)| > |Ci],
cecy

which implies dg(v) > |Ci| + 1. Tt follows that Ng(v) contains a vertex not in

any component of C{, a contradiction. O

Claim 10. For any v € T, if Ng(v) NV(C) = 0 for each component C € C;
with |C| =1, then dg(v) > di(u) for each vertex u € Ny (v).

Proof. Clearly, Ng(v) N'Y; # 0 if and only if Ng(v) has a neighbor in some
component of Uk21 Cak+1. Suppose Ng(v) has a neighbor in some component
of Up>1 Cak+1- Then, dg—c, (v) > 3 by Claim 6, and hence dy(v) > 3 > du(y)
by Claim 8 and Claim 9 for each y € Y1 N Ny (v).

By the operations on G, S N Ng(v) = SN Ng(v). Suppose w € SN Ny (v).
Let C{ = {C € C; : N¢(v) # 0}. By the hypothesis of the claim, |C'] >
2 for each C’ € Cj provided C; # 0, and hence |f,(C’)] > 1 by Claim 4.
Since Ny (w) C T, we have Ng(w) \ {v} C Na(v) by Lemma 2.1 (1). Clearly,
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( U fol@)N(Ng(w) \{v}) = 0. Then dg(v) = da(v) +1 = > |fo(C)]+
C'EC{ CIEC{

du(w) > [Ci] + du(w). Thus, dg(v) = dg-c, (v) = du(w). O
Claim 11. For any vertex v € T, if there exists a vertex uw € Ny(v) with
dg(u) > dg(v), then dg(u) > 3,dg(v) = dg(u) — 1, and dg(v') > dg(u) +1

for each vertex v' € Ny (u) \ {v}.

Proof. By dg(u) > di(v) and Claim 10, v has a neighbor in some component
C € € with |C| = 1. Suppose C = {w}. Then, Ng(v) C S U {w} by Claim
2, and so v € S and dy(v) = dg(v) — 1. Since H = H[Y,T] is a bipartite
graph, Ng(u) C T. By Lemma 2.1 (1), (Ng(u) \ {v}) € Na(v). Thus, dg(v) >
da(v) + 1 > dg(u), which implies dg(v) = dg(v) — 1 > dg(u) — 1. By dg(u) >
dp(v), we have dy(v) = dg(u) — 1, which implies No(v) = Ny (u) \ {v}. Thus,
(Ng(u)\T) € Ng(v), and u has at most w as a neighbor in the components
of Ha(S,T). It follows that di(u) = |[Ng(u) NT| > 3 by Lemma 2.1 (4). Since
Na(v) = Ny (u) \ {v} C T and Ng(w) C S U {v}, we have Ng[w] C Ng[v]. We
have Ng[w] = Ng[v]. Otherwise, Ng(w)\ {v} is a proper subset of Ng(v)\ {w},
which implies |eg(w, S)| < |eg(v,S)|. Let T/ := (T U {w}) \ {v}, C" := {v},
and Hg(S,T') = (Ha(S,T)\ {C}H U{C'}. By |C] =1 and dg_g(v) = 1, it
is easy to see that 0¢(S,T') = 6¢(S,T). By leg(v,S)| > |leg(w,S)|, we have
eq(S,Ha(S,T7)) > eq(S,Ha(S,T)), giving a contradiction to the choice of
(S,T). Thus, we have w € N(u) by Ng[w] = Ng[v]. Since Nr(w) = {v}, we
have {w} U (Ng(u) \ {v'}) C Na(v') for each vertex v’ € Ny (u) \ {v}. Thus,
de(v') > do(uw')+1 > dy(u) + 1.

Let uy € Ng(u) \ {v}. Suppose u; has no neighbor in any component of
C1. Then dy(u1) = dg(u1) > dg(u) + 1 by uy € T. Suppose N¢v(u1) # 0 for
some component C’ € C; with |C’| = 1. By Ny(w) = {v} and w € N(u), we
have w € Na(uq1). Let C' = {w'}. Then, Ng_s(u1) = {w’} by Claim 2. Clearly,
w # w' and Ng(w') € SU{uy}. Suppose there is a vertex ug € Ng(w') \ {u1}
with ujug ¢ E(G). Then, us € S and hence ug # w. Thus {ug,w} U (Ng(u) \
{u1}) C Na(u1) and do(u1) > dg(u) + 1, which implies dg(uq) > da(ui) +1 >
dp(u) + 2. Since Ng_g(u1) = {w'}, we have dg(u1) = dg(u1) — 1 > dg(u) + 1.

10



245

250

255

260

265

Suppose Ng(w') C Nglui]. Then, Ng|w'] = Ng[u]. Otherwise, |eg(u, S)| >
leg(w’, S)|. Let T* := (T U {w'}) \ {u1}. As the preceding proof for v and w,
we have 6q(S,T*) = 0¢(S,T), and eq (S, Ha(S,T*)) > ec(S, Ha(S,T)), giving
a contradiction to the choice of (S,7T). Thus uww’ € E(G) by u € Ng(u1),
which implies w’ € Na(v), giving a contradiction with Na(v) = Ng(u) \ {v}.
Suppose |C”| > 2 for each component C” € C; with Ngw(uy) # 0. Then,
by Claim 4, |f,,(C")] > 1 for each component C"” € C; with Nev(uy) # 0.
Note that |J fu,(C")U (Ng(u) \ {u1}) U {w} C Na(u1). Then dg(ui) >

S (O] di () + 1. Thus dig () > di () + 1. 0
crree,

By Claim 9, T' contains no isolated vertex in H. Note that Y may contain
some isolated vertex y in H if and only if y € S with Ng(y) NT = 0. Let
Y’ = Ny(T) and H' := H[Y’,T] be a subgraph of H[Y,T]. By Claim 10 and
Claim 11, each edge in H' satisfies the hypothesis of Lemma 2.2, and hence
|T| < |Y'] < |Y| by Lemma 2.2. By Lemma 2.1 (5) and Claim 7, we have

|T| > |Y|, giving a contradiction. Thus Theorem 1.2 is true.
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