Local Dirac's condition on the existence of 2-factor

Xiaodong Chen ${ }^{\mathrm{a}, *}$, Guantao Chen ${ }^{\text {b }}$
${ }^{a}$ School of Mathematics, Liaoning Normal University, Dalian 116029, P.R. China
${ }^{b}$ Department of Mathematics and Statistics of Georgia State University, Atlanta, GA 30303, USA

Abstract

Let G be simple graph. For a vertex $u \in V(G)$, denote by $M_{2}(u)$ the set of vertices v with distance at most 2 away from u. We say that graph G satisfies the local Dirac's condition if for every vertex $u \in V(G)$, its degree $d(u)$ satisfies $d(u) \geq \frac{\left|M_{2}(u)\right|}{2}$.

It was conjectured that a connected graph G on at least three vertices satisfies the local Dirac's condition, then G is Hamiltonian. However, Asratian et al. disproved this conjecture. In this paper, we show that if a connected graph G on at least three vertices satisfies the local Dirac's condition, then it contains a 2 -factor. Furthermore, this result is shown to be the best possible.

Keywords: local Dirac's condition, 2-factor, barrier

1. Introduction

In this paper, we consider simple graphs, that is, finite graphs without multiple edges and loops. For notation and terminology not defined here, readers are referred to [7]. A graph is Hamiltonian if it contains a spanning cycle. Determining whether a graph is Hamiltonian is one of few fundamental problems in graph theory. There are several well-known sufficient conditions for a graph to

[^0]be Hamiltonian, such as Dirac's Theorem [10], Ore's Theorem [12] and ChvátalErdős Theorem [9]. These sufficient conditions involves some global parameters of a graph: the order, degrees of vertices, the independence number and the connectivity.

Inspired by the above global conditions, there are some analogues $[2,3,4$, $5,8,13$] under the local criteria. Let G be a graph. For any two vertices $u, v \in V(G)$, we use $d(u, v)$ to denote the distance between u and v in G which is the minimum length of a path with the ends u and v. For a vertex $u \in V(G)$ and a nonnegative integer k, let $M_{k}(u)$ denote set S of vertices v such that $d(u, v) \leq k$. By definition, $M_{0}(u)=\{u\}$ and $M_{1}(u)=N(u) \cup\{u\}$ is the closed neighborhood of u. Diract's theorem asserts that a graph of order $n \geq 3$ is Hamiltonian if minimum degree $\delta(G) \geq n / 2$. For each vertex $v \in V(G)$, let $d(v)$ denote the degree of u. Asratian and Khachatryan [2] generalized this ${ }_{20}$ result as follows.

Theorem 1.1 (Asratian and Khachatryan). Let G be a connected graph with at least three vertices. If $d(u) \geq \frac{\left|M_{3}(u)\right|}{2}$ for each vertex $u \in V(G)$, then G is Hamiltonian.

Readers are referred to $[3,5,11,14,16]$ for more local conditions on Hamil${ }_{25}$ tonian graphs. We say a graph G satisfies the local Dirac's condition if $d(u) \geq$ $\frac{\left|M_{2}(u)\right|}{2}$ for each vertex $u \in V(G)$. Asratian et al. [5] constructed a 2-connected graph G on at least three vertices that satisfies the local Dirac's condition but is not Hamiltonian. The graph in Fig. 1 satisfies the local Dirac's condition but is not 2 -connected. Consequently, it is not 1-tough.

Figure 1: A graph G without a 2-factor. to contain a 2 -factor.

Theorem 1.2. Let G be a connected graph with at least three vertices. If $d(u) \geq$ $\frac{\left|M_{2}(u)\right|}{2}$ for each vertex $u \in V(G)$, then G contains a 2-factor.

The graph G in Fig. 2 contains no 2-factor and $d\left(v_{i}\right)=\frac{\left|M_{2}\left(v_{i}\right)\right|-1}{2}$ for each vertex v_{i} in $G, i \in\{1,2,3,4\}$. Thus the bound in Theorem 1.2 is sharp.

Figure 2: A graph with a cut vertex u satisfying the local Dirac's condition.

In the following, we introduce some notation will be used in this paper. Let G be a graph and $v \in V(G)$. Denote by $N_{G}(v)$ the set of neighbors of v in G, and denote by $N_{G}[v]$ the set $N_{G}(v) \cup\{v\}$. If there is no confusion, we use $N(v)$ and $N[v]$ to denote $N_{G}(v)$ and $N_{G}[v]$, respectively. For a vertex set $S \subseteq V(G)$, there is no confusion. For a graph G with $A, B \subseteq V(G)$, let $e_{G}(A, B)$ denote the number of edges with one end in A and the other end in B, and let $e_{G}(v, B)$ denote $e_{G}(\{v\}, B)$.

Let $N_{2}(u)=M_{2}(u) \backslash N[u]$ and $d_{2}(u)=\left|N_{2}(u)\right|$. In a subgraph H of a graph ${ }_{45} G, v$ is called an interior vertex of H if $N[v] \subseteq V(H)$. Let $\alpha(G)$ and $\kappa(G)$ denote the independence number and the connectivity of a graph G, respectively.

2. Preliminaries

A multigraph is a finite graph that may contain parallel edges but no loops. Let G be a multigraph and $S, T \subseteq V(G)$ be two disjoint vertex sets. A compo-
respect to (S, T) if $e_{G}(C, T) \equiv 1(\bmod 2)\left(\right.$ resp., $\left.e_{G}(C, T) \equiv 0(\bmod 2)\right)$. Let $\mathcal{H}_{G}(S, T)$ denote the set of the odd components of $G-(S \cup T)$ and $h_{G}(S, T)=$ $\left|\mathcal{H}_{G}(S, T)\right| ;$ moreover, let $\delta_{G}(S, T)=2|S|-2|T|+\sum_{x \in T} d_{G-S}(x)-h_{G}(S, T)$. The following sufficient and necessary condition on the existence of a 2-factor ${ }_{55}$ is derived from Tutte's f-factor theorem in [15].

Theorem 2.1. ([15]) A multigraph G contains a 2-factor if and only if $\delta_{G}(S, T) \geq$ 0 for every $S, T \subseteq V(G)$ with $S \cap T=\emptyset$.

Following the definition of $\delta_{G}(S, T)$, we can verify that $\delta_{G}(S, T) \equiv 0(\bmod 2)$ for every $S, T \subseteq V(G)$ with $S \cap T=\emptyset$. By Theorem 2.1, if a graph G contains no 2-factor, then G has an ordered pair (S, T) with $S \cap T=\emptyset$ and $\delta_{G}(S, T) \leq-2$.. We call an ordered pair (S, T) a barrier if $S \cap T=\emptyset$ and $\delta_{G}(S, T) \leq-2$. A barrier (S, T) is called a minimal barrier if $|S \cup T|$ is minimized among all the barriers of G. The following result gives the characterizations of a minimal barrier, in which (1)-(3) are obtained from [1] and (4)-(5) are from [8].
${ }_{65}$ Lemma 2.1. ([1, 8]) Let G be a graph without a 2-factor. If (S, T) is a minimal barrier of G, then
(1) T is independent;
(2) if C is an even component with respect to (S, T), then $e_{G}(T, C)=0$;
(3) if C is an odd component with respect to (S, T), then $e_{G}(v, C) \leq 1$ for every $v \in T ;$
(4) for every $v \in S,\left|\left\{C \in \mathcal{H}_{G}(S, T): e_{G}(v, C) \geq 1\right\}\right|+e_{G}(v, T) \geq 4$;
(5) $|T|>|S|+\sum_{k \geq 1} k \cdot\left|\mathcal{C}_{2 k+1}\right|$, where $\mathcal{C}_{2 k+1}$ is the union of components C in $\mathcal{H}_{G}(S, T)$ with $e_{G}(C, T)=2 k+1, k \geq 0$.

The following result is an important tool in the proof of our main result.
${ }^{75}$ Lemma 2.2. Let $G[X, Y]$ be a bipartite graph without isolated vertices. If one of the following two conditions holds for each vertex $y \in Y) x y \in E(G)$, then $|X| \leq|Y|$.
(i) $d(x) \geq d(y)$ for every $x \in N(y)$.
(ii) $d(y) \geq 3$, there is a neighbor $x_{0} \in N(y)$ such that $d\left(x_{0}\right)=d(y)-1$ and

Proof. For each edge $x y \in E(G)$ with $x \in X$ and $y \in Y$, we assign as weight $w(x y)=\frac{1}{d(x)}$. Then,

$$
\sum_{e \in E(G)} w(e)=\sum_{x \in X} \sum_{y \in N(x)} \frac{1}{d(x)}=\sum_{x \in X} 1=|X|
$$

For each vertex $y \in Y$, if (i) holds, then $\sum_{x \in N(y)} w(x y)=\sum_{x \in N(y)} \frac{1}{d(x)} \leq \frac{|N(y)|}{d(y)}=1$. If (ii) holds, then $\sum_{x \in N(y)} w(x y) \leq \sum_{x \in N(y) \backslash\left\{x_{0}\right\}} \frac{1}{d(y)+1}+\frac{1}{d(y)-1}=\frac{d(y)-1}{d(y)+1}+\frac{1}{d(y)-1} \leq$ 1 since $d(y) \geq 3$. Hence, in both case we have $\sum_{x \in N(y)} w(x y) \leq 1$, which in turn shows that

$$
\sum_{e \in E(G)} w(e)=\sum_{y \in Y} \sum_{x \in N(y)} \frac{1}{d(x)} \leq \sum_{y \in Y} 1=|Y| .
$$

Therefore, $|X|=\sum_{e \in E(G)} w(e) \leq|Y|$.
AAA Note that $M_{2}(v)=N[v] \cup N_{2}(v)$ and $\left|M_{2}(v)\right|=d(v)+d_{2}(v)+1$ for each vertex v in a graph. Then, by simple calculation, we can obtain the following ${ }^{2} 0$ result.

Remark 1. If G satisfies the local Dirac's condition, then $d(v) \geq d_{2}(v)+1$ for each vertex v of G.

3. Proof of Theorem 1.2

Suppose on the contrary, there exists a connected graph G with at least three 95 vertices satisfying the local Dirac's condition, but G contains no 2 -factor. Let $E\left(\mathcal{H}_{G}(S, T)\right)$ denote the union of the edge sets of all components in $\mathcal{H}_{G}(S, T)$, and for a vertex set W of $S \cup T$, let $e_{G}\left(W, \mathcal{H}_{G}(S, T)\right)$ denote the number of edges between W and all the components in $\mathcal{H}_{G}(S, T)$. Then, by Theorem 2.1, we choose a barrier (S, T) of G such that
(2) subject to (1), $\left|E\left(\mathcal{H}_{G}(S, T)\right)\right|$ is maximized;
(3) subject to (1) and (2), $e_{G}\left(S, \mathcal{H}_{G}(S, T)\right)$ is maximized.

Claim 1. $\delta(G) \geq 2$.

Proof. We have either $N[v]=V(G)$ or $d_{2}(v) \geq 1$ for each vertex $v \in V(G)$. If $N[v]=V(G)$, then $d(v) \geq|V(G)|-1 \geq 2$. If $d_{2}(v) \geq 1$, then $d(v) \geq d_{2}(v)+1 \geq$ 2.

Claim 2. For each $v \in T$, if $N_{C}(v) \neq \emptyset$ for some component $C \in \mathcal{C}_{1}$ with $|C|=1$, then $d_{G-S}(v)=1$.

Proof. Suppose on the contrary, there exists a vertex $v \in T$ and a component $C \in \mathcal{C}_{1}$ with $|C|=1$ and $d_{G-S}(v) \geq 2$. Let $C=\{u\}$. By Lemma 2.1 (1)-(3), there are $d_{G-S}(v)$ components of $\mathcal{H}_{G}(S, T)$, in each one of which v has exactly one neighbor. Thus $e_{G}\left(\{v\}, \mathcal{H}_{G}(S, T)\right)=d_{G-S}(v) \geq 2$. Let $T^{\prime}:=(T \cup\{u\}) \backslash\{v\}$. Clearly, $|S \cup T|=\left|S \cup T^{\prime}\right|$. We have $h_{G}\left(S, T^{\prime}\right)=h_{G}(S, T)-d_{G-S}(v)+1$ by Lemma 2.1 (2)-(3), and $\sum_{w \in T^{\prime}} d_{G-S}(w)=\sum_{w \in T} d_{G-S}(w)-d_{G-S}(v)+1$. Thus, $\delta_{G}\left(S, T^{\prime}\right)=\delta_{G}(S, T)$. Since $|C|=1$ and $d_{G-S}(v) \geq 2$, we have $\left|E\left(\mathcal{H}_{G}\left(S, T^{\prime}\right)\right)\right|>$ $\left|E\left(\mathcal{H}_{G}(S, T)\right)\right|$, a contradiction to the choice of (S, T). Thus $d_{G-S}(v)=1$.

For each vertex $v \in T$, we define a mapping f_{v} from $\mathcal{H}_{G}(S, T)$ to $\mathcal{P}\left(N_{2}(v)\right)$ such that $f_{v}(C)=N_{2}(v) \cap V(C)$ for $C \in \mathcal{H}_{G}(S, T)$, where $\mathcal{P}\left(N_{2}(v)\right)=\{S: S \subseteq$ $\left.N_{2}(v)\right\}$. Clearly, $f_{v}(C) \cap f_{v}\left(C^{\prime}\right)=\emptyset$ if C and C^{\prime} are two distinct components in $\mathcal{H}_{G}(S, T)$.

By Claim 2 and Lemma 2.1 (3), it is easy to obtain the following result.
Claim 3. For each vertex $v \in T$, if $N_{C}(v) \neq \emptyset$ for some component $C \in$ $\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$, then $\left|C^{\prime}\right| \geq 2$ and $f_{v}\left(C^{\prime}\right) \neq \emptyset$ for each component C^{\prime} in \mathcal{C}_{1} with $N_{C^{\prime}}(v) \neq \emptyset$.

By Lemma 2.1 (3), each vertex $v \in T$ has at most one neighbor in each component of $\mathcal{H}_{G}(S, T)$. We have the following result.

Claim 4. For any vertex $v \in T$ and any component $C \in \mathcal{H}_{G}(S, T)$ with $|C| \geq 2$, if $N_{C}(v) \neq \emptyset$, then $f_{v}(C) \neq \emptyset$.

Claim 5. Given an edge $u v$ with $v \in T, u \in V(C)$, and $C \in \bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$, if o $d_{G-\mathcal{C}_{1}}(v) \leq 2$, then $N_{T}(u)=\{v\}, d_{C}(u)=1$ and $d_{S}(v)=1$.

Proof. By Lemma $2.1(3), N_{C}(v)=\{u\}$. Let $\mathcal{C}_{1}^{\prime}=\left\{C \in \mathcal{C}_{1}: N_{C}(v) \neq \emptyset\right\}$. By Claim 3, $\left|C^{\prime}\right| \geq 2$ and $f_{v}\left(C^{\prime}\right) \neq \emptyset$ for each component C^{\prime} in \mathcal{C}_{1}^{\prime} provided $\mathcal{C}_{1}^{\prime} \neq \emptyset$. Thus, $\left|\mathcal{C}_{1}^{\prime}\right| \leq \sum_{C^{\prime} \in \mathcal{C}_{1}^{\prime}}\left|f_{v}\left(C^{\prime}\right)\right| \leq d_{2}(v)$. We have $d_{2}(v) \leq\left|\mathcal{C}_{1}^{\prime}\right|+1$. Otherwise, $d_{2}(v) \geq\left|\mathcal{C}_{1}^{\prime}\right|+2$, and then $d(v) \geq d_{2}(v)+1 \geq\left|\mathcal{C}_{1}^{\prime}\right|+3$ by Lemma 1 , which implies $d_{G-\mathcal{C}_{1}}(v) \geq 3$, giving a contradiction.

Suppose $|C|=1$, i.e., $C=\{u\}$. Then, $d_{T}(u) \geq 3$ since $C \in \bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$. Note that $N_{T}(u) \backslash\{v\} \subseteq N_{2}(v)$ by Lemma 2.1 (1). It follows that $d_{2}(v) \geq$ $\sum_{C^{\prime} \in \mathcal{C}_{1}^{\prime}}\left|f_{v}\left(C^{\prime}\right)\right|+\left(d_{T}(u)-1\right) \geq\left|\mathcal{C}_{1}^{\prime}\right|+\left(d_{T}(u)-1\right) \geq\left|\mathcal{C}_{1}^{\prime}\right|+2$, giving a contradiction. Thus, $|C| \geq 2$ and then $\left|f_{v}(C)\right| \geq 1$ by Claim 4 , which implies $d_{2}(v) \geq\left|\mathcal{C}_{1}^{\prime}\right|+$ $\left|f_{v}(C)\right| \geq\left|\mathcal{C}_{1}^{\prime}\right|+1$. Note that $d_{C}(u)=\left|f_{v}(C)\right|$. If $\left|f_{v}(C)\right| \geq 2$ or $N_{T}(u) \backslash\{v\} \neq \emptyset$, then we have $d_{2}(v) \geq\left|\mathcal{C}_{1}^{\prime}\right|+2$, giving a contradiction. Thus, $N_{T}(u)=\{v\}$ and $d_{C}(u)=1$. Moreover, we have $d_{2}(v)=\left|\mathcal{C}_{1}^{\prime}\right|+1$ and hence $d(v) \geq\left|\mathcal{C}_{1}^{\prime}\right|+2$ by Lemma 1 , which implies $d_{G-\mathcal{C}_{1}}(v)=2$ by $d_{G-\mathcal{C}_{1}}(v) \leq 2$. Suppose $N_{S}(v)=$ \emptyset. Then, by $d_{G-\mathcal{C}_{1}}(v)=2$ and Lemma $2.1(1)$, there is a component $C^{\prime} \in$ $\left(\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}\right) \backslash\{C\}$ with $N_{C^{\prime}}(v) \neq \emptyset$. As the preceding proof for $C,\left|C^{\prime}\right| \geq 2$ and $\left|f_{v}\left(C^{\prime}\right)\right|=1$. It follows that $d_{2}(v) \geq\left|\mathcal{C}_{1}^{\prime}\right|+\left|f_{v}\left(C^{\prime}\right)\right|+\left|f_{v}(C)\right|=\left|\mathcal{C}_{1}^{\prime}\right|+2$, giving a contradiction. Thus $N_{S}(v) \neq \emptyset$, and $d_{S}(v)=1$ by $d_{G-\mathcal{C}_{1}}(v)=2$.

Claim 6. For $v \in T$, if $N_{C}(v) \neq \emptyset$ for some $C \in \bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$, then $d_{G-\mathcal{C}_{1}}(v) \geq$ 3.

Proof. Denote by u the neighbor of v in C. Suppose on the contrary, $d_{G-\mathcal{C}_{1}}(v) \leq$ 2. Then, $d_{S}(v)=1$ by Claim 5. Let $N_{S}(v)=\{w\}$. Clearly, $w \neq u$. Since $d_{G-\mathcal{C}_{1}}(v) \leq 2$, we have $d_{G-\mathcal{C}_{1}}(v)=2$ by $\{w, u\} \subseteq N(v)$. By Claim $5, d_{C}(u)=1$, which implies $|C| \geq 2$ and $\left|f_{v}(C)\right|=1$. Let $N_{C}(u)=\left\{u_{1}\right\}$. Then, $f_{v}(C)=\left\{u_{1}\right\}$. Suppose $\left|N_{T}(w)\right| \geq 2$ and let $w_{1} \in N_{T}(w) \backslash\{v\}$. Then, $w_{1} \in N_{2}(v)$ by Lemma ${ }_{155} 2.1$ (1). Let $\mathcal{C}_{1}^{\prime}=\left\{C \in \mathcal{C}_{1}: N_{C}(v) \neq \emptyset\right\}$. By Claim 3, $f_{v}\left(C^{\prime}\right) \neq \emptyset$ for each
component C^{\prime} in \mathcal{C}_{1}^{\prime} provided $\mathcal{C}_{1}^{\prime} \neq \emptyset$. Clearly, $u_{1} \neq w_{1}$ and $\left\{u_{1}, w_{1}\right\} \subseteq N_{2}(v)$. Moreover, $\left\{u_{1}, w_{1}\right\} \cap f_{v}\left(C^{\prime}\right)=\emptyset$ for each $C^{\prime} \in \mathcal{C}_{1}^{\prime}$. It follows that $d_{2}(v) \geq\left|\mathcal{C}_{1}^{\prime}\right|+2$, which implies $d_{G-\mathcal{C}_{1}}(v) \geq 3$, giving a contradiction. Thus $N_{T}(w)=\{v\}$.

By Lemma 2.1 (4), there are at least three components of $\mathcal{H}_{G}(S, T)$ in which

Let H be the resulting graph obtained by doing the following operations on G :
(1) Remove all the even components;
(2) Remove all the components in \mathcal{C}_{1};
(3) Remove all the edges in $G[S]$;
(4) For each component $C \in \bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$, suppose $N_{T}(C)=\left\{v_{0}^{C}, v_{1}^{C}, \cdots, v_{2 k}^{C}\right\}$. Firstly, replace C by an independent set $U^{C}=\left\{u_{1}^{C}, u_{2}^{C}, \cdots, u_{k}^{C}\right\}$. Secondly, join u_{i}^{C} to $v_{2 i-1}^{C}$ and $v_{2 i}^{C}$, respectively, and moreover, join u_{1}^{C} to $v_{0}^{C}, 1 \leq i \leq$ k.

Clearly, the vertices in $S \cup T$ of G are not changed in H, and we still use S and T to denote the two vertex sets in H. Since T is an independent set in G by Lemma 2.1 (1), by the above operations, H is a bipartite graph. In the following proof, let $H=H[Y, T]$ and $Y_{1}=Y \backslash S$, where $Y=S \cup\left(\bigcup_{k \geq 1} \bigcup_{C \in \mathcal{C}_{2 k+1}} U^{C}\right)$. By the above operations, we can obtain the following two results.

Claim 7. $|Y|=|S|+\sum_{k \geq 1} k \cdot\left|\mathcal{C}_{2 k+1}\right|$.
Claim 8. $d_{H}(y) \leq 3$ for each vertex $y \in Y_{1}$.

Claim 9. For each vertex $v \in T, d_{H}(v)=d_{G-\mathcal{C}_{1}}(v) \geq 1$.
Proof. By Lemma $2.1(1)-(2), N_{G}(v) \subseteq S \cup\left(\bigcup_{k \geq 0} \mathcal{C}_{2 k+1}\right)$ for each vertex $v \in T$. Thus we have $d_{H}(v)=d_{G-\mathcal{C}_{1}}(v)$ from the operations on G. Suppose on the

Claim 10. For any $v \in T$, if $N_{G}(v) \cap V(C)=\emptyset$ for each component $C \in \mathcal{C}_{1}$ with $|C|=1$, then $d_{H}(v) \geq d_{H}(u)$ for each vertex $u \in N_{H}(v)$.

Proof. Clearly, $N_{H}(v) \cap Y_{1} \neq \emptyset$ if and only if $N_{G}(v)$ has a neighbor in some component of $\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$. Suppose $N_{G}(v)$ has a neighbor in some component of $\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$. Then, $d_{G-\mathcal{C}_{1}}(v) \geq 3$ by Claim 6, and hence $d_{H}(v) \geq 3 \geq d_{H}(y)$ by Claim 8 and Claim 9 for each $y \in Y_{1} \cap N_{H}(v)$.

By the operations on $G, S \cap N_{H}(v)=S \cap N_{G}(v)$. Suppose $w \in S \cap N_{H}(v)$. Let $\mathcal{C}_{1}^{\prime}=\left\{C \in \mathcal{C}_{1}: N_{C}(v) \neq \emptyset\right\}$. By the hypothesis of the claim, $\left|C^{\prime}\right| \geq$ 2 for each $C^{\prime} \in \mathcal{C}_{1}^{\prime}$ provided $\mathcal{C}_{1}^{\prime} \neq \emptyset$, and hence $\left|f_{v}\left(C^{\prime}\right)\right| \geq 1$ by Claim 4. Since $N_{H}(w) \subseteq T$, we have $N_{H}(w) \backslash\{v\} \subseteq N_{2}(v)$ by Lemma 2.1 (1). Clearly,
$\left(\bigcup_{C^{\prime} \in \mathcal{C}_{1}^{\prime}} f_{v}\left(C^{\prime}\right)\right) \cap\left(N_{H}(w) \backslash\{v\}\right)=\emptyset$. Then $d_{G}(v) \geq d_{2}(v)+1 \geq \sum_{C^{\prime} \in \mathcal{C}_{1}^{\prime}}\left|f_{v}\left(C^{\prime}\right)\right|+$ $d_{H}(w) \geq\left|\mathcal{C}_{1}^{\prime}\right|+d_{H}(w)$. Thus, $d_{H}(v)=d_{G-\mathcal{C}_{1}}(v) \geq d_{H}(w)$.

Claim 11. For any vertex $v \in T$, if there exists a vertex $u \in N_{H}(v)$ with ${ }_{215} \quad d_{H}(u)>d_{H}(v)$, then $d_{H}(u) \geq 3, d_{H}(v)=d_{H}(u)-1$, and $d_{H}\left(v^{\prime}\right) \geq d_{H}(u)+1$ for each vertex $v^{\prime} \in N_{H}(u) \backslash\{v\}$.

Proof. By $d_{H}(u)>d_{H}(v)$ and Claim 10, v has a neighbor in some component $C \in \mathcal{C}_{1}$ with $|C|=1$. Suppose $C=\{w\}$. Then, $N_{G}(v) \subseteq S \cup\{w\}$ by Claim 2, and so $u \in S$ and $d_{H}(v)=d_{G}(v)-1$. Since $H=H[Y, T]$ is a bipartite graph, $N_{H}(u) \subseteq T$. By Lemma $2.1(1),\left(N_{H}(u) \backslash\{v\}\right) \subseteq N_{2}(v)$. Thus, $d_{G}(v) \geq$ $d_{2}(v)+1 \geq d_{H}(u)$, which implies $d_{H}(v)=d_{G}(v)-1 \geq d_{H}(u)-1$. By $d_{H}(u)>$ $d_{H}(v)$, we have $d_{H}(v)=d_{H}(u)-1$, which implies $N_{2}(v)=N_{H}(u) \backslash\{v\}$. Thus, $\left(N_{G}(u) \backslash T\right) \subseteq N_{G}(v)$, and u has at most w as a neighbor in the components of $\mathcal{H}_{G}(S, T)$. It follows that $d_{H}(u)=\left|N_{G}(u) \cap T\right| \geq 3$ by Lemma 2.1 (4). Since ${ }_{225} \quad N_{2}(v)=N_{H}(u) \backslash\{v\} \subseteq T$ and $N_{G}(w) \subseteq S \cup\{v\}$, we have $N_{G}[w] \subseteq N_{G}[v]$. We have $N_{G}[w]=N_{G}[v]$. Otherwise, $N_{G}(w) \backslash\{v\}$ is a proper subset of $N_{G}(v) \backslash\{w\}$, which implies $\left|e_{G}(w, S)\right|<\left|e_{G}(v, S)\right|$ Let $T^{\prime}:=(T \cup\{w\}) \backslash\{v\}, C^{\prime}:=\{v\}$, and $\mathcal{H}_{G}\left(S, T^{\prime}\right)=\left(\mathcal{H}_{G}(S, T) \backslash\{C\}\right) \cup\left\{C^{\prime}\right\}$. By $|C|=1$ and $d_{G-S}(v)=1$, it is easy to see that $\delta_{G}\left(S, T^{\prime}\right)=\delta_{G}(S, T)$. By $\left|e_{G}(v, S)\right|>\left|e_{G}(w, S)\right|$, we have ${ }_{230} e_{G}\left(S, \mathcal{H}_{G}\left(S, T^{\prime}\right)\right)>e_{G}\left(S, \mathcal{H}_{G}(S, T)\right)$, giving a contradiction to the choice of (S, T). Thus, we have $w \in N(u)$ by $N_{G}[w]=N_{G}[v]$. Since $N_{T}(w)=\{v\}$, we have $\{w\} \cup\left(N_{H}(u) \backslash\left\{u^{\prime}\right\}\right) \subseteq N_{2}\left(u^{\prime}\right)$ for each vertex $u^{\prime} \in N_{H}(u) \backslash\{v\}$. Thus, $d_{G}\left(u^{\prime}\right) \geq d_{2}\left(u^{\prime}\right)+1 \geq d_{H}(u)+1$.

Let $u_{1} \in N_{H}(u) \backslash\{v\}$. Suppose u_{1} has no neighbor in any component of \mathcal{C}_{1}. Then $d_{H}\left(u_{1}\right)=d_{G}\left(u_{1}\right) \geq d_{H}(u)+1$ by $u_{1} \in T$. Suppose $N_{C^{\prime}}\left(u_{1}\right) \neq \emptyset$ for some component $C^{\prime} \in \mathcal{C}_{1}$ with $\left|C^{\prime}\right|=1$. By $N_{T}(w)=\{v\}$ and $w \in N(u)$, we have $w \in N_{2}\left(u_{1}\right)$. Let $C^{\prime}=\left\{w^{\prime}\right\}$. Then, $N_{G-S}\left(u_{1}\right)=\left\{w^{\prime}\right\}$ by Claim 2. Clearly, $w \neq w^{\prime}$ and $N_{G}\left(w^{\prime}\right) \subseteq S \cup\left\{u_{1}\right\}$. Suppose there is a vertex $u_{2} \in N_{G}\left(w^{\prime}\right) \backslash\left\{u_{1}\right\}$ with $u_{1} u_{2} \notin E(G)$. Then, $u_{2} \in S$ and hence $u_{2} \neq w$. Thus $\left\{u_{2}, w\right\} \cup\left(N_{H}(u) \backslash\right.$ $\left.{ }_{240} \quad\left\{u_{1}\right\}\right) \subseteq N_{2}\left(u_{1}\right)$ and $d_{2}\left(u_{1}\right) \geq d_{H}(u)+1$, which implies $d_{G}\left(u_{1}\right) \geq d_{2}\left(u_{1}\right)+1 \geq$ $d_{H}(u)+2$. Since $N_{G-S}\left(u_{1}\right)=\left\{w^{\prime}\right\}$, we have $d_{H}\left(u_{1}\right)=d_{G}\left(u_{1}\right)-1 \geq d_{H}(u)+1$.

Suppose $N_{G}\left(w^{\prime}\right) \subseteq N_{G}\left[u_{1}\right]$. Then, $N_{G}\left[w^{\prime}\right]=N_{G}\left[u_{1}\right]$. Otherwise, $\left|e_{G}\left(u_{1}, S\right)\right|>$ $\left|e_{G}\left(w^{\prime}, S\right)\right|$ Let $T^{*}:=\left(T \cup\left\{w^{\prime}\right\}\right) \backslash\left\{u_{1}\right\}$. As the preceding proof for v and w, we have $\delta_{G}\left(S, T^{*}\right)=\delta_{G}(S, T)$, and $e_{G}\left(S, \mathcal{H}_{G}\left(S, T^{*}\right)\right)>e_{G}\left(S, \mathcal{H}_{G}(S, T)\right)$, giving a contradiction to the choice of (S, T). Thus $u w^{\prime} \in E(G)$ by $u \in N_{G}\left(u_{1}\right)$, which implies $w^{\prime} \in N_{2}(v)$, giving a contradiction with $N_{2}(v)=N_{H}(u) \backslash\{v\}$. Suppose $\left|C^{\prime \prime}\right| \geq 2$ for each component $C^{\prime \prime} \in \mathcal{C}_{1}$ with $N_{C^{\prime \prime}}\left(u_{1}\right) \neq \emptyset$. Then, by Claim $4,\left|f_{u_{1}}\left(C^{\prime \prime}\right)\right| \geq 1$ for each component $C^{\prime \prime} \in \mathcal{C}_{1}$ with $N_{C^{\prime \prime}}\left(u_{1}\right) \neq \emptyset$. Note that $\bigcup_{C^{\prime \prime} \in \mathcal{C}_{1}} f_{u_{1}}\left(C^{\prime \prime}\right) \cup\left(N_{H}(u) \backslash\left\{u_{1}\right\}\right) \cup\{w\} \subseteq N_{2}\left(u_{1}\right)$. Then $d_{G}\left(u_{1}\right) \geq$ ${ }^{250} \sum_{C^{\prime \prime} \in \mathcal{C}_{1}}\left|f_{u_{1}}\left(C^{\prime \prime}\right)\right|+d_{H}(u)+1$. Thus $d_{H}\left(u_{1}\right) \geq d_{H}(u)+1$.

By Claim 9, T contains no isolated vertex in H. Note that Y may contain some isolated vertex y in H if and only if $y \in S$ with $N_{G}(y) \cap T=\emptyset$. Let $Y^{\prime}=N_{H}(T)$ and $H^{\prime}:=H\left[Y^{\prime}, T\right]$ be a subgraph of $H[Y, T]$. By Claim 10 and Claim 11, each edge in H^{\prime} satisfies the hypothesis of Lemma 2.2, and hence $|T|>|Y|$, giving a contradiction. Thus Theorem 1.2 is true.

References

[1] R.E.L. Aldred, Y. Egawa, J. Fujisawa, K. Ota, and A. Saito, The existence of a 2 -factor in $K_{1, n}$-free graphs with large connectivity and large edge-
[2] A.S. Asratian and N.K. Khachatryan, Some localization theorems on Hamiltonian circuits, J. Comb. Theory, Ser. B, 49 (1990) 287-294.
[3] A.S. Asratian and N.K. Khachatryan, On the local nature of some classical theorems on Hamilton cycles, Australas. J. Comb., 38 (2007) 77-86.
[4] A.S. Asratian and N.K. Khachatryan, Investigation of the Hamiltonian property of a graph using neighborhoods of vertices, Akad. Nauk Armenian SSR Dokl., 81 (1985) 103-106 (in Russian).
[5] A.S. Asratian, J.B. Granholm and N.K. Khachatryan, A localization method in Hamiltonian graph theory, J. Comb. Theory Ser. B, 148 (2021) 209-238.
[6] A.S. Asratyan and N. K. Khachatryan, Two theorems on a Hamiltonian graphs (in Russian), Math. Zametki, 35 (1984) 55-61.
[7] J. Bondy and U. Murty, Graph Theory with Its Applications, American Elsevier, New York (1976).
[8] G. Chen, A. Saito and S. Shan, The existence of a 2-factor in a graph satisfying the local Chvátal-Erdős condition, SIAM J. Discrete Math., 27 (2013) 1788-1799.
[9] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math., 2 (1972) 111-113.
[10] G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc., 2 (1952) 69-81.
[11] K. Heuer, A sufficient condition for Hamiltonicity in locally finite graphs, European J. Comb., 45 (2015) 97-114.
[12] O. Ore, Note on hamilton circuits, Amer. Math. Monthly, 67 (1960) 55.
5 [13] A. Saito, Chvátal-Erdős theorem: Old theorem with new aspects, in Computational Geometry and Graph Theory, Lecture Notes in Comput. Sci. 4535, Springer, Berlin, 2008, 191-200.
[14] R. Shi and D. Lou, A localization condition for bipancyclic bipartite graphs, J. Syst. Sci. Complex, 10 (1997) 61-65.
[15] W.T. Tutte, A short proof of the factor theorem for finite graphs, Canadian J. Math., 6 (1954) 347-352.
[16] S.A. van Aardt, J.E. Dunbar, M. Frick, O.R. Oellermann and J.P. de Wet, On Saito's Conjecture and the Oberly-Sumner Conjectures, Graphs and Comb., 33 (2017) 583-594.

[^0]: * Corresponding author: Xiaodong Chen
 **This research is supported by National Natural Science Foundation of China (Grant No. 11901268), and partially supported by NSF grant DMS-1855716 and DMS-2154331.

 Email addresses: xiaodongchen74@126.com; (Xiaodong Chen), gchen@gsu.edu (Guantao Chen)

