Local Dirac's condition on the existence of 2-factor

Xiaodong Chen^{a,*}, Guantao Chen^b

^aSchool of Mathematics, Liaoning Normal University, Dalian 116029, P.R. China ^bDepartment of Mathematics and Statistics of Georgia State University, Atlanta, GA 30303, USA

Abstract

Let G be simple graph. For a vertex $u \in V(G)$, denote by $M_2(u)$ the set of vertices v with distance at most 2 away from u. We say that graph G satisfies the *local Dirac's condition* if for every vertex $u \in V(G)$, its degree d(u) satisfies $d(u) \geq \frac{|M_2(u)|}{2}$.

It was conjectured that a connected graph G on at least three vertices satisfies the local Dirac's condition, then G is Hamiltonian. However, Asratian et al. disproved this conjecture. In this paper, we show that if a connected graph G on at least three vertices satisfies the local Dirac's condition, then it contains a 2-factor. Furthermore, this result is shown to be the best possible. *Keywords:* local Dirac's condition, 2-factor, barrier

, , , ,

1. Introduction

In this paper, we consider simple graphs, that is, finite graphs without multiple edges and loops. For notation and terminology not defined here, readers are referred to [7]. A graph is *Hamiltonian* if it contains a spanning cycle. Determining whether a graph is Hamiltonian is one of few fundamental problems in graph theory. There are several well-known sufficient conditions for a graph to

 $^{^{*}\}mathrm{Corresponding}$ author: Xiaodong Chen

^{**}This research is supported by National Natural Science Foundation of China (Grant No. 11901268), and partially supported by NSF grant DMS-1855716 and DMS-2154331.

Email addresses: xiaodongchen740126.com; (Xiaodong Chen), gchen0gsu.edu (Guantao Chen)

be Hamiltonian, such as Dirac's Theorem [10], Ore's Theorem [12] and Chvátal-Erdős Theorem [9]. These sufficient conditions involves some global parameters of a graph: the order, degrees of vertices, the independence number and the connectivity.

Inspired by the above global conditions, there are some analogues [2, 3, 4,]5, 8, 13] under the local criteria. Let G be a graph. For any two vertices $u, v \in V(G)$, we use d(u, v) to denote the distance between u and v in G which is the minimum length of a path with the ends u and v. For a vertex $u \in V(G)$ and a nonnegative integer k, let $M_k(u)$ denote set S of vertices v such that 15 $d(u,v) \leq k$. By definition, $M_0(u) = \{u\}$ and $M_1(u) = N(u) \cup \{u\}$ is the closed neighborhood of u. Diract's theorem asserts that a graph of order $n \geq 3$ is Hamiltonian if minimum degree $\delta(G) \geq n/2$. For each vertex $v \in V(G)$, let d(v) denote the degree of u. As and Khachatryan [2] generalized this

result as follows. 20

10

Theorem 1.1 (Astratian and Khachatryan). Let G be a connected graph with at least three vertices. If $d(u) \geq \frac{|M_3(u)|}{2}$ for each vertex $u \in V(G)$, then G is Hamiltonian.

Readers are referred to [3, 5, 11, 14, 16] for more local conditions on Hamiltonian graphs. We say a graph G satisfies the local Dirac's condition if $d(u) \geq$ 25 $\frac{|M_2(u)|}{2}$ for each vertex $u \in V(G)$. As ratian et al. [5] constructed a 2-connected graph G on at least three vertices that satisfies the local Dirac's condition but is not Hamiltonian. The graph in Fig.1 satisfies the local Dirac's condition but is not 2-connected. Consequently, it is not 1-tough.

Figure 1: A graph G without a 2-factor.

In this paper, we prove the local Dirac's condition is a sufficient for a graph to contain a 2-factor.

Theorem 1.2. Let G be a connected graph with at least three vertices. If $d(u) \ge \frac{|M_2(u)|}{2}$ for each vertex $u \in V(G)$, then G contains a 2-factor.

The graph G in Fig.2 contains no 2-factor and $d(v_i) = \frac{|M_2(v_i)|-1}{2}$ for each vertex v_i in $G, i \in \{1, 2, 3, 4\}$. Thus the bound in Theorem 1.2 is sharp.

Figure 2: A graph with a cut vertex u satisfying the local Dirac's condition.

In the following, we introduce some notation will be used in this paper. Let G be a graph and $v \in V(G)$. Denote by $N_G(v)$ the set of neighbors of v in G, and denote by $N_G[v]$ the set $N_G(v) \cup \{v\}$. If there is no confusion, we use N(v)and N[v] to denote $N_G(v)$ and $N_G[v]$, respectively. For a vertex set $S \subseteq V(G)$,

let $N_S(v) = S \cap N_G(v), d_S(v) = |N_S(v)|$. Let d(v) denote $d_G(v)$ for brevity if there is no confusion. For a graph G with $A, B \subseteq V(G)$, let $e_G(A, B)$ denote the number of edges with one end in A and the other end in B, and let $e_G(v, B)$ denote $e_G(\{v\}, B)$.

Let $N_2(u) = M_2(u) \setminus N[u]$ and $d_2(u) = |N_2(u)|$. In a subgraph H of a graph ⁴⁵ G, v is called an *interior vertex* of H if $N[v] \subseteq V(H)$. Let $\alpha(G)$ and $\kappa(G)$ denote the independence number and the connectivity of a graph G, respectively.

2. Preliminaries

A multigraph is a finite graph that may contain parallel edges but no loops. Let G be a multigraph and $S, T \subseteq V(G)$ be two disjoint vertex sets. A component C of $G - (S \cup T)$ C is called an *odd component* (resp., *even component*) with respect to (S,T) if $e_G(C,T) \equiv 1 \pmod{2}$ (resp., $e_G(C,T) \equiv 0 \pmod{2}$). Let $\mathcal{H}_G(S,T)$ denote the set of the odd components of $G - (S \cup T)$ and $h_G(S,T) = |\mathcal{H}_G(S,T)|$; moreover, let $\delta_G(S,T) = 2|S| - 2|T| + \sum_{x \in T} d_{G-S}(x) - h_G(S,T)$. The following sufficient and necessary condition on the existence of a 2-factor

is derived from Tutte's f-factor theorem in [15].

Theorem 2.1. ([15]) A multigraph G contains a 2-factor if and only if $\delta_G(S, T) \ge 0$ for every $S, T \subseteq V(G)$ with $S \cap T = \emptyset$.

Following the definition of $\delta_G(S, T)$, we can verify that $\delta_G(S, T) \equiv 0 \pmod{2}$ for every $S, T \subseteq V(G)$ with $S \cap T = \emptyset$. By Theorem 2.1, if a graph G contains no

- ⁶⁰ 2-factor, then G has an ordered pair (S,T) with $S \cap T = \emptyset$ and $\delta_G(S,T) \leq -2..$ We call an ordered pair (S,T) a barrier if $S \cap T = \emptyset$ and $\delta_G(S,T) \leq -2.$ A barrier (S,T) is called a minimal barrier if $|S \cup T|$ is minimized among all the barriers of G. The following result gives the characterizations of a minimal barrier, in which (1)-(3) are obtained from [1] and (4)-(5) are from [8].
- Lemma 2.1. ([1, 8]) Let G be a graph without a 2-factor. If (S, T) is a minimal barrier of G, then
 - (1) T is independent;
 - (2) if C is an even component with respect to (S,T), then $e_G(T,C) = 0$;
 - (3) if C is an odd component with respect to (S, T), then $e_G(v, C) \leq 1$ for every
- 70 $v \in T;$
 - (4) for every $v \in S$, $|\{C \in \mathcal{H}_G(S,T) : e_G(v,C) \ge 1\}| + e_G(v,T) \ge 4;$
 - (5) $|T| > |S| + \sum_{k \ge 1} k \cdot |\mathcal{C}_{2k+1}|$, where \mathcal{C}_{2k+1} is the union of components C in $\mathcal{H}_G(S,T)$ with $e_G(C,T) = 2k+1, k \ge 0$.

The following result is an important tool in the proof of our main result.

⁷⁵ Lemma 2.2. Let G[X, Y] be a bipartite graph without isolated vertices. If one of the following two conditions holds for each vertex $y \in Y$) $xy \in E(G)$, then $|X| \leq |Y|$. (i) $d(x) \ge d(y)$ for every $x \in N(y)$.

(ii) $d(y) \ge 3$, there is a neighbor $x_0 \in N(y)$ such that $d(x_0) = d(y) - 1$ and $d(y) \ge 3$ and $d(x) \ge d(y) + 1$ for ever vertex in $x \in N(y) \setminus \{x_0\}$.

Proof. For each edge $xy \in E(G)$ with $x \in X$ and $y \in Y$, we assign as weight $w(xy) = \frac{1}{d(x)}$. Then,

$$\sum_{e \in E(G)} w(e) = \sum_{x \in X} \sum_{y \in N(x)} \frac{1}{d(x)} = \sum_{x \in X} 1 = |X|$$

For each vertex $y \in Y$, if (i) holds, then $\sum_{x \in N(y)} w(xy) = \sum_{x \in N(y)} \frac{1}{d(x)} \leq \frac{|N(y)|}{d(y)} = 1$. If (ii) holds, then $\sum_{x \in N(y)} w(xy) \leq \sum_{x \in N(y) \setminus \{x_0\}} \frac{1}{d(y)+1} + \frac{1}{d(y)-1} = \frac{d(y)-1}{d(y)+1} + \frac{1}{d(y)-1} \leq 1$ since $d(y) \geq 3$. Hence, in both case we have $\sum_{x \in N(y)} w(xy) \leq 1$, which in turn shows that

$$\sum_{e \in E(G)} w(e) = \sum_{y \in Y} \sum_{x \in N(y)} \frac{1}{d(x)} \le \sum_{y \in Y} 1 = |Y|.$$

Therefore, $|X| = \sum_{e \in E(G)} w(e) \le |Y|.$

85

90

AAA Note that $M_2(v) = N[v] \cup N_2(v)$ and $|M_2(v)| = d(v) + d_2(v) + 1$ for each vertex v in a graph. Then, by simple calculation, we can obtain the following result.

Remark 1. If G satisfies the local Dirac's condition, then $d(v) \ge d_2(v) + 1$ for each vertex v of G.

3. Proof of Theorem 1.2

Suppose on the contrary, there exists a connected graph G with at least three vertices satisfying the local Dirac's condition, but G contains no 2-factor. Let $E(\mathcal{H}_G(S,T))$ denote the union of the edge sets of all components in $\mathcal{H}_G(S,T)$, and for a vertex set W of $S \cup T$, let $e_G(W, \mathcal{H}_G(S,T))$ denote the number of edges between W and all the components in $\mathcal{H}_G(S,T)$. Then, by Theorem 2.1, we choose a barrier (S,T) of G such that

(1) (S,T) is a minimal barrier of G; 100

(2) subject to (1), $|E(\mathcal{H}_G(S,T))|$ is maximized;

(3) subject to (1) and (2), $e_G(S, \mathcal{H}_G(S, T))$ is maximized.

Claim 1. $\delta(G) > 2$.

Proof. We have either N[v] = V(G) or $d_2(v) \ge 1$ for each vertex $v \in V(G)$. If N[v] = V(G), then $d(v) \ge |V(G)| - 1 \ge 2$. If $d_2(v) \ge 1$, then $d(v) \ge d_2(v) + 1 \ge 0$ 105 2.

Claim 2. For each $v \in T$, if $N_C(v) \neq \emptyset$ for some component $C \in C_1$ with |C| = 1, then $d_{G-S}(v) = 1$.

Proof. Suppose on the contrary, there exists a vertex $v \in T$ and a component $C \in C_1$ with |C| = 1 and $d_{G-S}(v) \ge 2$. Let $C = \{u\}$. By Lemma 2.1 (1)-(3), 110 there are $d_{G-S}(v)$ components of $\mathcal{H}_G(S,T)$, in each one of which v has exactly one neighbor. Thus $e_G(\{v\}, \mathcal{H}_G(S, T)) = d_{G-S}(v) \ge 2$. Let $T' := (T \cup \{u\}) \setminus \{v\}$. Clearly, $|S \cup T| = |S \cup T'|$. We have $h_G(S, T') = h_G(S, T) - d_{G-S}(v) + 1$ by Lemma 2.1 (2)-(3), and $\sum_{w \in T'} d_{G-S}(w) = \sum_{w \in T} d_{G-S}(w) - d_{G-S}(v) + 1$. Thus, 115 $\delta_G(S,T') = \delta_G(S,T)$. Since |C| = 1 and $d_{G-S}(v) \ge 2$, we have $|E(\mathcal{H}_G(S,T'))| > 1$ $|E(\mathcal{H}_G(S,T))|$, a contradiction to the choice of (S,T). Thus $d_{G-S}(v) = 1$.

For each vertex $v \in T$, we define a mapping f_v from $\mathcal{H}_G(S,T)$ to $\mathcal{P}(N_2(v))$ such that $f_v(C) = N_2(v) \cap V(C)$ for $C \in \mathcal{H}_G(S,T)$, where $\mathcal{P}(N_2(v)) = \{S : S \subseteq V\}$ $N_2(v)$. Clearly, $f_v(C) \cap f_v(C') = \emptyset$ if C and C' are two distinct components in $\mathcal{H}_G(S,T).$ 120

By Claim 2 and Lemma 2.1 (3), it is easy to obtain the following result.

Claim 3. For each vertex $v \in T$, if $N_C(v) \neq \emptyset$ for some component $C \in$ $\bigcup_{k>1} \mathcal{C}_{2k+1}$, then $|C'| \geq 2$ and $f_v(C') \neq \emptyset$ for each component C' in \mathcal{C}_1 with $N_{C'}(v) \neq \emptyset.$

By Lemma 2.1 (3), each vertex $v \in T$ has at most one neighbor in each 125 component of $\mathcal{H}_G(S,T)$. We have the following result.

Claim 4. For any vertex $v \in T$ and any component $C \in \mathcal{H}_G(S,T)$ with $|C| \ge 2$, if $N_C(v) \neq \emptyset$, then $f_v(C) \neq \emptyset$.

Claim 5. Given an edge uv with $v \in T, u \in V(C)$, and $C \in \bigcup_{k \ge 1} C_{2k+1}$, if ¹³⁰ $d_{G-C_1}(v) \le 2$, then $N_T(u) = \{v\}, d_C(u) = 1$ and $d_S(v) = 1$.

Proof. By Lemma 2.1 (3), $N_C(v) = \{u\}$. Let $\mathcal{C}'_1 = \{C \in \mathcal{C}_1 : N_C(v) \neq \emptyset\}$. By Claim 3, $|C'| \ge 2$ and $f_v(C') \neq \emptyset$ for each component C' in \mathcal{C}'_1 provided $\mathcal{C}'_1 \neq \emptyset$. Thus, $|\mathcal{C}'_1| \le \sum_{C' \in \mathcal{C}'_1} |f_v(C')| \le d_2(v)$. We have $d_2(v) \le |\mathcal{C}'_1| + 1$. Otherwise, $d_2(v) \ge |\mathcal{C}'_1| + 2$, and then $d(v) \ge d_2(v) + 1 \ge |\mathcal{C}'_1| + 3$ by Lemma 1, which implies $d_{G-\mathcal{C}_1}(v) \ge 3$, giving a contradiction.

135

Suppose |C| = 1, i.e., $C = \{u\}$. Then, $d_T(u) \ge 3$ since $C \in \bigcup_{k\ge 1} C_{2k+1}$. Note that $N_T(u) \setminus \{v\} \subseteq N_2(v)$ by Lemma 2.1 (1). It follows that $d_2(v) \ge \sum_{\substack{C' \in C'_1 \\ Thus}} |f_v(C')| + (d_T(u)-1) \ge |\mathcal{C}'_1| + (d_T(u)-1) \ge |\mathcal{C}'_1| + 2$, giving a contradiction. Thus, $|C| \ge 2$ and then $|f_v(C)| \ge 1$ by Claim 4, which implies $d_2(v) \ge |\mathcal{C}'_1| + 1$ 140 $|f_v(C)| \ge |\mathcal{C}'_1| + 1$. Note that $d_C(u) = |f_v(C)|$. If $|f_v(C)| \ge 2$ or $N_T(u) \setminus \{v\} \ne \emptyset$, then we have $d_2(v) \ge |\mathcal{C}'_1| + 2$, giving a contradiction. Thus, $N_T(u) = \{v\}$ and $d_C(u) = 1$. Moreover, we have $d_2(v) = |\mathcal{C}'_1| + 1$ and hence $d(v) \ge |\mathcal{C}'_1| + 2$ by Lemma 1, which implies $d_{G-\mathcal{C}_1}(v) = 2$ by $d_{G-\mathcal{C}_1}(v) \le 2$. Suppose $N_S(v) = \emptyset$. 145 $(\bigcup_{k\ge 1} \mathcal{C}_{2k+1}) \setminus \{C\}$ with $N_{C'}(v) \ne \emptyset$. As the preceding proof for C, $|C'| \ge 2$ and $|f_v(C')| = 1$. It follows that $d_2(v) \ge |\mathcal{C}'_1| + |f_v(C')| + |f_v(C)| = |\mathcal{C}'_1| + 2$, giving

a contradiction. Thus $N_S(v) \neq \emptyset$, and $d_S(v) = 1$ by $d_{G-\mathcal{C}_1}(v) = 2$.

Claim 6. For $v \in T$, if $N_C(v) \neq \emptyset$ for some $C \in \bigcup_{k \ge 1} C_{2k+1}$, then $d_{G-C_1}(v) \ge 3$.

Proof. Denote by u the neighbor of v in C. Suppose on the contrary, $d_{G-C_1}(v) \leq 2$. 2. Then, $d_S(v) = 1$ by Claim 5. Let $N_S(v) = \{w\}$. Clearly, $w \neq u$. Since $d_{G-C_1}(v) \leq 2$, we have $d_{G-C_1}(v) = 2$ by $\{w, u\} \subseteq N(v)$. By Claim 5, $d_C(u) = 1$, which implies $|C| \geq 2$ and $|f_v(C)| = 1$. Let $N_C(u) = \{u_1\}$. Then, $f_v(C) = \{u_1\}$. Suppose $|N_T(w)| \geq 2$ and let $w_1 \in N_T(w) \setminus \{v\}$. Then, $w_1 \in N_2(v)$ by Lemma 155 2.1 (1). Let $C'_1 = \{C \in C_1 : N_C(v) \neq \emptyset\}$. By Claim 3, $f_v(C') \neq \emptyset$ for each component C' in \mathcal{C}'_1 provided $\mathcal{C}'_1 \neq \emptyset$. Clearly, $u_1 \neq w_1$ and $\{u_1, w_1\} \subseteq N_2(v)$. Moreover, $\{u_1, w_1\} \cap f_v(C') = \emptyset$ for each $C' \in \mathcal{C}'_1$. It follows that $d_2(v) \geq |\mathcal{C}'_1| + 2$, which implies $d_{G-\mathcal{C}_1}(v) \geq 3$, giving a contradiction. Thus $N_T(w) = \{v\}$.

- By Lemma 2.1 (4), there are at least three components of $\mathcal{H}_G(S,T)$ in which w has a neighbor. Suppose $N_{C^*}(w) \neq \emptyset$ and $N_{C^*}(v) = \emptyset$ for a component $C^* \in \mathcal{H}_G(S,T)$. Let $w^* \in N_{C^*}(w)$. Then, $w^* \in N_2(v)$. Clearly, $w^* \neq u_1$ and $\{w^*, u_1\} \subseteq N_2(v)$. Moreover, $\{u_1, w^*\} \cap f_v(C') = \emptyset$ for each $C' \in \mathcal{C}'_1$. Thus $d_2(v) \geq |\mathcal{C}'_1| + 2$, and then $d_{G-\mathcal{C}_1}(v) \geq 3$, giving a contradiction. Thus $N_{C^*}(v) \neq \emptyset$ for each component $C^* \in \mathcal{H}_G(S,T)$ with $N_{C^*}(w) \neq \emptyset$. It follows that there are at least three components of $\mathcal{H}_G(S,T)$ in which v has a neighbor. Moreover, by $d_S(v) = 1$, we have $d_G(v) \geq 4$, which implies $|\mathcal{C}'_1| \geq 2$ by $d_{G-\mathcal{C}_1}(v) = 2$. Suppose C_1, C_2 are two distinct components in \mathcal{C}'_1 and $v_i \in f_v(C_i), i \in \{1, 2\}$ by Claim 3. Clearly, $\{v_1, v_2\} \subseteq N_2(v)$. Recall that $f_v(C) = \{u_1\}$. Since $C \in \bigcup_{k>1} \mathcal{C}_{2k+1}$
- and $d_T(u) = d_C(u) = 1$ by Claim 5, there is some vertex $u' \in V(C) \setminus \{u\}$ with $N_T(u') \neq \emptyset$, which implies $N(u_1) \setminus N(u) \neq \emptyset$. Thus there exists a vertex $u^* \in N(u_1)$ with $u^* \in N_2(u)$. Clearly, $\{u^*\} \cap N_{C_i}(v) = \emptyset, i = 1, 2$, and hence $d_2(u) \ge 3$. Thus $d(u) \ge d_2(u) + 1 \ge 4$, which implies $d_S(u) \ge 2$ by $d_C(u) = 1$ and $d_T(u) = 1$. Let $u_2 \in N_S(u) \setminus \{w\}$. By $N_S(v) = \{w\}$, we have $u_2 \in N_2(v)$. Clearly, $u_1 \neq u_2$ and $\{u_1, u_2\} \cap f_v(C') = \emptyset$ for each $C' \in \mathcal{C}'_1$. Thus, $d_2(v) \ge$
- $|\mathcal{C}_{1}| + |\{u_1, u_2\}| = |\mathcal{C}_{1}| + 2$, and then $d_{G-\mathcal{C}_1}(v) \geq 3$, giving a contradiction. \Box

Let H be the resulting graph obtained by doing the following operations on G:

- (1) Remove all the even components;
- (2) Remove all the components in C_1 ;
- 180 (3) Remove all the edges in G[S];
 - (4) For each component $C \in \bigcup_{k \ge 1} C_{2k+1}$, suppose $N_T(C) = \{v_0^C, v_1^C, \cdots, v_{2k}^C\}$. Firstly, replace C by an independent set $U^C = \{u_1^C, u_2^C, \cdots, u_k^C\}$. Secondly, join u_i^C to v_{2i-1}^C and v_{2i}^C , respectively, and moreover, join u_1^C to v_0^C , $1 \le i \le k$.

Clearly, the vertices in $S \cup T$ of G are not changed in H, and we still use Sand T to denote the two vertex sets in H. Since T is an independent set in G by Lemma 2.1 (1), by the above operations, H is a bipartite graph. In the following proof, let H = H[Y,T] and $Y_1 = Y \setminus S$, where $Y = S \cup (\bigcup_{k \ge 1} \bigcup_{C \in \mathcal{C}_{2k+1}} U^C)$. By the above operations, we can obtain the following two results.

190 **Claim 7.**
$$|Y| = |S| + \sum_{k \ge 1} k \cdot |\mathcal{C}_{2k+1}|$$

Claim 8. $d_H(y) \leq 3$ for each vertex $y \in Y_1$.

Claim 9. For each vertex $v \in T$, $d_H(v) = d_{G-C_1}(v) \ge 1$.

Proof. By Lemma 2.1 (1)-(2), $N_G(v) \subseteq S \cup (\bigcup_{k \ge 0} C_{2k+1})$ for each vertex $v \in T$. Thus we have $d_H(v) = d_{G-C_1}(v)$ from the operations on G. Suppose on the

- contrary that H contains an isolated vertex v in T. Then, $N_G(v) \subseteq \bigcup_{C \in \mathcal{C}_1} C$. Let \mathcal{C}'_1 denote the union of the components in \mathcal{C}_1 , in which v has a neighbour. Then, $|\mathcal{C}'_1| \ge 2$ since $d_G(v) \ge 2$ by Claim 1 and Lemma 2.1 (3), and hence $|C| \ge 2$ by Claim 2, for each component $C \in \mathcal{C}'_1$. Moreover, each C in \mathcal{C}'_1 contains at least one vertex in $N_2(v)$ in G by Claim 4. Thus $d_2(v) \ge \sum_{C \in \mathcal{C}'_1} |f_v(C)| \ge |\mathcal{C}'_1|$,
- which implies $d_G(v) \ge |\mathcal{C}'_1| + 1$. It follows that $N_G(v)$ contains a vertex not in any component of \mathcal{C}'_1 , a contradiction.

Claim 10. For any $v \in T$, if $N_G(v) \cap V(C) = \emptyset$ for each component $C \in C_1$ with |C| = 1, then $d_H(v) \ge d_H(u)$ for each vertex $u \in N_H(v)$.

Proof. Clearly, $N_H(v) \cap Y_1 \neq \emptyset$ if and only if $N_G(v)$ has a neighbor in some component of $\bigcup_{k\geq 1} C_{2k+1}$. Suppose $N_G(v)$ has a neighbor in some component of $\bigcup_{k\geq 1} C_{2k+1}$. Then, $d_{G-C_1}(v) \geq 3$ by Claim 6, and hence $d_H(v) \geq 3 \geq d_H(y)$ by Claim 8 and Claim 9 for each $y \in Y_1 \cap N_H(v)$.

By the operations on $G, S \cap N_H(v) = S \cap N_G(v)$. Suppose $w \in S \cap N_H(v)$. Let $C'_1 = \{C \in C_1 : N_C(v) \neq \emptyset\}$. By the hypothesis of the claim, $|C'| \ge$ 210 2 for each $C' \in C'_1$ provided $C'_1 \neq \emptyset$, and hence $|f_v(C')| \ge 1$ by Claim 4. Since $N_H(w) \subseteq T$, we have $N_H(w) \setminus \{v\} \subseteq N_2(v)$ by Lemma 2.1 (1). Clearly,

$$(\bigcup_{C' \in \mathcal{C}'_1} f_v(C')) \cap (N_H(w) \setminus \{v\}) = \emptyset. \text{ Then } d_G(v) \ge d_2(v) + 1 \ge \sum_{C' \in \mathcal{C}'_1} |f_v(C')| + d_H(w) \ge |\mathcal{C}'_1| + d_H(w). \text{ Thus, } d_H(v) = d_{G-\mathcal{C}_1}(v) \ge d_H(w).$$

Claim 11. For any vertex $v \in T$, if there exists a vertex $u \in N_H(v)$ with

²¹⁵ $d_H(u) > d_H(v)$, then $d_H(u) \ge 3$, $d_H(v) = d_H(u) - 1$, and $d_H(v') \ge d_H(u) + 1$ for each vertex $v' \in N_H(u) \setminus \{v\}$.

Proof. By $d_H(u) > d_H(v)$ and Claim 10, v has a neighbor in some component $C \in \mathcal{C}_1$ with |C| = 1. Suppose $C = \{w\}$. Then, $N_G(v) \subseteq S \cup \{w\}$ by Claim 2, and so $u \in S$ and $d_H(v) = d_G(v) - 1$. Since H = H[Y,T] is a bipartite graph, $N_H(u) \subseteq T$. By Lemma 2.1 (1), $(N_H(u) \setminus \{v\}) \subseteq N_2(v)$. Thus, $d_G(v) \ge d_2(v) + 1 \ge d_H(u)$, which implies $d_H(v) = d_G(v) - 1 \ge d_H(u) - 1$. By $d_H(u) > d_H(v)$, we have $d_H(v) = d_H(u) - 1$, which implies $N_2(v) = N_H(u) \setminus \{v\}$. Thus, $(N_G(u) \setminus T) \subseteq N_G(v)$, and u has at most w as a neighbor in the components of $\mathcal{H}_G(S,T)$. It follows that $d_H(u) = |N_G(u) \cap T| \ge 3$ by Lemma 2.1 (4). Since

²²⁵ $N_2(v) = N_H(u) \setminus \{v\} \subseteq T \text{ and } N_G(w) \subseteq S \cup \{v\}, \text{ we have } N_G[w] \subseteq N_G[v].$ We have $N_G[w] = N_G[v].$ Otherwise, $N_G(w) \setminus \{v\}$ is a proper subset of $N_G(v) \setminus \{w\}$, which implies $|e_G(w, S)| < |e_G(v, S)|.$ Let $T' := (T \cup \{w\}) \setminus \{v\}, C' := \{v\},$ and $\mathcal{H}_G(S, T') = (\mathcal{H}_G(S, T) \setminus \{C\}) \cup \{C'\}.$ By |C| = 1 and $d_{G-S}(v) = 1$, it is easy to see that $\delta_G(S, T') = \delta_G(S, T).$ By $|e_G(v, S)| > |e_G(w, S)|,$ we have

 $e_G(S, \mathcal{H}_G(S, T')) > e_G(S, \mathcal{H}_G(S, T))$, giving a contradiction to the choice of (S, T). Thus, we have $w \in N(u)$ by $N_G[w] = N_G[v]$. Since $N_T(w) = \{v\}$, we have $\{w\} \cup (N_H(u) \setminus \{u'\}) \subseteq N_2(u')$ for each vertex $u' \in N_H(u) \setminus \{v\}$. Thus, $d_G(u') \ge d_2(u') + 1 \ge d_H(u) + 1$.

Let $u_1 \in N_H(u) \setminus \{v\}$. Suppose u_1 has no neighbor in any component of

- C₁. Then $d_H(u_1) = d_G(u_1) \ge d_H(u) + 1$ by $u_1 \in T$. Suppose $N_{C'}(u_1) \ne \emptyset$ for some component $C' \in \mathcal{C}_1$ with |C'| = 1. By $N_T(w) = \{v\}$ and $w \in N(u)$, we have $w \in N_2(u_1)$. Let $C' = \{w'\}$. Then, $N_{G-S}(u_1) = \{w'\}$ by Claim 2. Clearly, $w \ne w'$ and $N_G(w') \subseteq S \cup \{u_1\}$. Suppose there is a vertex $u_2 \in N_G(w') \setminus \{u_1\}$ with $u_1u_2 \notin E(G)$. Then, $u_2 \in S$ and hence $u_2 \ne w$. Thus $\{u_2, w\} \cup (N_H(u) \setminus$
- $\{u_1\} \subseteq N_2(u_1) \text{ and } d_2(u_1) \ge d_H(u) + 1, \text{ which implies } d_G(u_1) \ge d_2(u_1) + 1 \ge d_H(u) + 2. \text{ Since } N_{G-S}(u_1) = \{w'\}, \text{ we have } d_H(u_1) = d_G(u_1) 1 \ge d_H(u) + 1.$

Suppose $N_G(w') \subseteq N_G[u_1]$. Then, $N_G[w'] = N_G[u_1]$. Otherwise, $|e_G(u_1, S)| > |e_G(w', S)|$. Let $T^* := (T \cup \{w'\}) \setminus \{u_1\}$. As the preceding proof for v and w, we have $\delta_G(S, T^*) = \delta_G(S, T)$, and $e_G(S, \mathcal{H}_G(S, T^*)) > e_G(S, \mathcal{H}_G(S, T))$, giving

a contradiction to the choice of (S,T). Thus $uw' \in E(G)$ by $u \in N_G(u_1)$, which implies $w' \in N_2(v)$, giving a contradiction with $N_2(v) = N_H(u) \setminus \{v\}$. Suppose $|C''| \ge 2$ for each component $C'' \in C_1$ with $N_{C''}(u_1) \ne \emptyset$. Then, by Claim 4, $|f_{u_1}(C'')| \ge 1$ for each component $C'' \in C_1$ with $N_{C''}(u_1) \ne \emptyset$. Note that $\bigcup_{C'' \in C_1} f_{u_1}(C'') \cup (N_H(u) \setminus \{u_1\}) \cup \{w\} \subseteq N_2(u_1)$. Then $d_G(u_1) \ge$ $\sum_{C'' \in C_1} |f_{u_1}(C'')| + d_H(u) + 1$. Thus $d_H(u_1) \ge d_H(u) + 1$.

By Claim 9, T contains no isolated vertex in H. Note that Y may contain some isolated vertex y in H if and only if $y \in S$ with $N_G(y) \cap T = \emptyset$. Let $Y' = N_H(T)$ and H' := H[Y', T] be a subgraph of H[Y, T]. By Claim 10 and Claim 11, each edge in H' satisfies the hypothesis of Lemma 2.2, and hence $|T| \leq |Y'| \leq |Y|$ by Lemma 2.2. By Lemma 2.1 (5) and Claim 7, we have |T| > |Y|, giving a contradiction. Thus Theorem 1.2 is true.

References

260

- R.E.L. Aldred, Y. Egawa, J. Fujisawa, K. Ota, and A. Saito, The existence of a 2-factor in K_{1,n}-free graphs with large connectivity and large edgeconnectivity, J. Graph Theory, 68 (2011) 77–89.
- [2] A.S. Asratian and N.K. Khachatryan, Some localization theorems on Hamiltonian circuits, J. Comb. Theory, Ser. B, 49 (1990) 287–294.
- [3] A.S. Asratian and N.K. Khachatryan, On the local nature of some classical theorems on Hamilton cycles, Australas. J. Comb., 38 (2007) 77–86.
- [4] A.S. Asratian and N.K. Khachatryan, Investigation of the Hamiltonian property of a graph using neighborhoods of vertices, Akad. Nauk Armenian SSR Dokl., 81 (1985) 103–106 (in Russian).

- [5] A.S. Asratian, J.B. Granholm and N.K. Khachatryan, A localization method in Hamiltonian graph theory, J. Comb. Theory Ser. B, 148 (2021) 209–238.
- [6] A.S. Asratyan and N. K. Khachatryan, Two theorems on a Hamiltonian graphs (in Russian), Math. Zametki, 35 (1984) 55–61.
- [7] J. Bondy and U. Murty, Graph Theory with Its Applications, American Elsevier, New York (1976).
- [8] G. Chen, A. Saito and S. Shan, The existence of a 2-factor in a graph satisfying the local Chvátal-Erdős condition, SIAM J. Discrete Math., 27 (2013) 1788–1799.
 - [9] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math., 2 (1972) 111–113.
- 280 [10] G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc., 2 (1952) 69–81.
 - [11] K. Heuer, A sufficient condition for Hamiltonicity in locally finite graphs, European J. Comb., 45 (2015) 97–114.
 - [12] O. Ore, Note on hamilton circuits, Amer. Math. Monthly, 67 (1960) 55.
- [13] A. Saito, Chvátal-Erdős theorem: Old theorem with new aspects, in Computational Geometry and Graph Theory, Lecture Notes in Comput. Sci. 4535, Springer, Berlin, 2008, 191–200.
 - [14] R. Shi and D. Lou, A localization condition for bipancyclic bipartite graphs, J. Syst. Sci. Complex, 10 (1997) 61–65.
- [15] W.T. Tutte, A short proof of the factor theorem for finite graphs, Canadian J. Math., 6 (1954) 347–352.
 - [16] S.A. van Aardt, J.E. Dunbar, M. Frick, O.R. Oellermann and J.P. de Wet, On Saito's Conjecture and the Oberly-Sumner Conjectures, Graphs and Comb., 33 (2017) 583–594.

270